K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có \(x^2+y^3\ge x^3+y^4\Leftrightarrow x^2+y^2+y^3\ge x^3+y^2+y^4\)

Áp dụng bđt AM-GM ta có \(y^4+y^2\ge2y^3\)

\(\Rightarrow x^2+y^3+y^2\ge x^3+2y^3\)

\(\Rightarrow x^3+y^3\le x^2+y^2\left(1\right)\)

Áp dụng bđt Cauchy - Schwarz ta có 

\(\left(x^2+y^2\right)^2\le\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2\right]\left[\left(\sqrt{x^3}\right)^2+\left(\sqrt{y^3}\right)^2\right]=\left(x+y\right)\left(x^3+y^3\right)\)

                         \(\le\left(x+y\right)\left(x^2+y^2\right)\)

\(\Rightarrow x^2+y^2\le x+y\left(2\right)\)

Lại có

\(\left(x+y\right)^2\le2\left(x^2+y^2\right)\le2\left(x+y\right)\)

\(\Rightarrow x+y\le2\left(3\right)\)

Từ (1),(2),(3) => đpcm

Đối với bài này ta cũng có thể chia các khoảng giá trị để chứng minh 

(Nhưng hơi dài và khó hiểu nên mình k làm ) 

Học tốt!!!!!!!!!

27 tháng 5 2021

Ta có:  \(\left(y^2-y\right)+2\ge0\Rightarrow2y^3\le y^4+y^2\)

\(\Rightarrow\left(x^3+y^2\right)+\left(x^2+y^3\right)\le\left(x^2+y^2\right)+\left(y^4+x^3\right)\)

Mà \(x^3+y^4\le x^2+y^3\)

\(\Rightarrow x^3+y^3\le x^2+y^2\left(1\right)\)

Lại có: \(x\left(x-1\right)^2\ge0;y\left(y+1\right)\left(y-1\right)^2\ge0\)

\(\Rightarrow x\left(x-1\right)^2+y\left(y+1\right)\left(y-1\right)^2\ge0\)

\(\Rightarrow x^3-2x^2+x+y^4-y^3-y^2+y\ge0\)

\(\Rightarrow\left(x^2+y^2\right)+\left(x^2+y^3\right)\le\left(x+y\right)+\left(x^3+y^4\right)\)

Mà \(x^2+y^3\ge x^3+y^4\)

\(\Rightarrow x^2+y^2\le x+y\left(2\right)\)

Và \(\left(x+1\right)\left(x-1\right)\ge0;\left(y-1\right)\left(y^3-1\right)\ge0\)

\(x^3-x^2-x+1+y^4-y-y^3+1\ge0\)

\(\Rightarrow\left(x+y\right)+\left(x^2+y^3\right)\le2+\left(x^3+y^4\right)\)

Mà \(x^2+y^3\ge x^3+y^4\)

\(\Rightarrow x+y\le2\left(3\right)\)

Từ (1), (2), (3) => đpcm

AH
Akai Haruma
Giáo viên
15 tháng 7 2018

Lời giải:

Áp dụng BĐT AM-GM:

\(x^2+y^3\geq x^3+y^4\)

\(\Rightarrow x^2+y^2+y^3\geq x^3+y^4+y^2\geq x^3+2\sqrt{y^6}=x^3+2y^3\)

\(\Rightarrow x^2+y^2\geq x^3+y^3(1)\)

Áp dụng BĐT Bunhiacopxky:

\((x+y^2)(x^2+y^3)\geq (x+y^2)(x^3+y^4)\geq (x^2+y^3)^2\)

\(\Rightarrow x+y^2\geq x^2+y^3\)

\(\Rightarrow x+y+y^2\geq x^2+y^3+y\geq x^2+2\sqrt{y^4}=x^2+2y^2\) (AM-GM)

\(\Rightarrow x+y\geq x^2+y^2\) (2)

Lại áp dụng BĐT AM-GM:

\(x^2+y^2\geq \frac{(x+y)^2}{2}\) . Suy ra \(x+y\geq x^2+y^2\geq \frac{(x+y)^2}{2}\)

\(\Rightarrow 1\geq \frac{x+y}{2}\Rightarrow x+y\leq 2(3)\)

Từ $(1),(2),(3)$ suy ra \(x^3+y^3\leq x^2+y^2\leq x+y\leq 2\)

Dấu bằng xảy ra khi $x=y=1$

15 tháng 7 2018

hấp dẫn thật tiếc là không biết làm

15 tháng 7 2018

Xét \(x,y\ge1\)

\(\Rightarrow\left\{{}\begin{matrix}x^2\le x^3\\y^2\le y^4\end{matrix}\right.\)

\(\Leftrightarrow x^2+y^2\le x^3+y^4\)(không thoả mãn)

Xét \(0< x,y\le1\)

\(\Rightarrow x^2\ge x^3;y^2\ge y^4\)

\(\Leftrightarrow x^2+y^2\ge x^3+y^4\)(thoả mãn)

\(\Rightarrow0< x,y\le1\) (đúng)

\(\Rightarrow\left\{{}\begin{matrix}x^3\le x^2\le x\le1\\y^3\le y^2\le y\le1\end{matrix}\right.\)

\(\Leftrightarrow x^3+y^3\le x^2+y^2\le x+y\le2\)

Dấu "=" xảy ra khi x = y = 1 .

12 tháng 3 2017

Sai đề rồi nha bạn! Điều kiện:  \(x^2+y^3\ge x^3+y^4\)

Sử dụng bất đẳng thức  \(C-S,\)  ta có:

\(\left(x^3+y^3\right)^2=\left(x\sqrt{x}.x\sqrt{x}+y^2.y\right)^2\le\left(x^3+y^4\right)\left(x^3+y^2\right)\le\left(x^2+y^3\right)\left(x^3+y^2\right)\)

\(\le\left(\frac{x^2+y^3+x^3+y^2}{2}\right)^2\)

\(\Rightarrow\)  \(x^3+y^3\le\frac{x^2+y^3+x^3+y^2}{2}\)  \(\Leftrightarrow\)  \(x^3+y^3\le x^2+y^2\) \(\left(1\right)\)

Lại có:   \(\left(x^2+y^2\right)^2=\left(x\sqrt{x}.\sqrt{x}+y\sqrt{y}.\sqrt{y}\right)^2\le\left(x^3+y^3\right)\left(x+y\right)\le\left(x^2+y^2\right)\left(x+y\right)\)

\(\Rightarrow\)  \(x^2+y^2\le x+y\)  \(\left(2\right)\)

Mặt khác, từ  \(\left(2\right)\)  với lưu ý rằng  \(x+y\le\sqrt{2\left(x^2+y^2\right)}\) \(\left(i\right)\)và  \(x,y\in R^+\) , ta thu được:

 \(x^2+y^2\le\sqrt{2\left(x^2+y^2\right)}\) \(\Leftrightarrow\)  \(x^2+y^2\le2\)   \(\left(3\right)\)

nên do đó,  \(\left(i\right)\)  suy ra \(x+y\le\sqrt{2.2}=2\)  \(\left(4\right)\)

Từ \(\left(1\right);\left(2\right);\left(3\right)\)  và  \(\left(4\right)\)  ta có đpcm

28 tháng 11 2021

Ta có \(x+y\le1\Leftrightarrow1-x\ge y>0\Leftrightarrow0< x< 1\)

Giả sử \(x^2-\dfrac{3}{4x}-\dfrac{x}{y}\le-\dfrac{9}{4}\)

\(\Leftrightarrow4x^2+9\le\dfrac{3}{x}+\dfrac{4x}{y}\\ \Leftrightarrow\dfrac{4x}{1-x}+\dfrac{3}{x}\ge4x^2+9\\ \Leftrightarrow\dfrac{4x^2+3\left(1-x\right)-x\left(4x^2+9\right)\left(1-x\right)}{x\left(1-x\right)}\ge0\\ \Leftrightarrow\dfrac{4x^4-4x^3+13x^2-12x+3}{x\left(1-x\right)}\ge0\\ \Leftrightarrow\dfrac{\left(x^2+3\right)\left(2x-1\right)^2}{x\left(1-x\right)}\ge0\)

Vì \(x>0;1-x>0\) nên BĐT trên luôn đúng

Vậy ta được đpcm

Dấu \("="\Leftrightarrow x=y=\dfrac{1}{2}\)

2 tháng 1 2021

3: \(P=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(y+z\right)+\left(y+x\right)}+\dfrac{z}{\left(z+x\right)+\left(z+y\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)+\dfrac{1}{4}\left(\dfrac{y}{y+z}+\dfrac{y}{y+x}\right)+\dfrac{1}{4}\left(\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)=\dfrac{3}{2}\).

Đẳng thức xảy ra khi x = y = x = \(\dfrac{1}{3}\).

7 tháng 4 2016

Ta co: \(\left(y-1\right)^2\ge0\Leftrightarrow y^2-2y+1\ge0\Leftrightarrow y^4\ge2y^3-y^2\)  

\(\Rightarrow x^2+y^3\ge x^3+y^4\ge2y^3-y^2+x^3\Leftrightarrow x^2+y^2\ge x^3+y^3\)

k giai tiep