K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2019

Em xem phần trả lời của bạn Giang nhé Câu hỏi của Vu Hoang - Toán lớp 8 - Học toán với OnlineMath

11 tháng 12 2019

1 cách khác:

Đặt \(a=\frac{x}{y};b=\frac{y}{z};c=\frac{z}{x}\Rightarrow abc=1\left(TMGT\right)\)

Khi đó:

\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)

\(=\frac{1}{b+1+\frac{1}{a}}+\frac{1}{c+1+\frac{1}{b}}+\frac{1}{a+1+\frac{1}{c}}\)

\(=\frac{1}{\frac{y}{z}+1+\frac{y}{x}}+\frac{1}{\frac{z}{x}+1+\frac{z}{y}}+\frac{1}{\frac{x}{y}+1+\frac{x}{z}}\)

\(=\frac{xz}{xy+yz+zx}+\frac{xy}{xy+yz+zx}+\frac{yz}{xy+yz+zx}=\frac{xy+yz+zx}{xy+yz+zx}=1\)

6 tháng 5 2019

Thay abc = 1 vào biểu thức ta có

\(\frac{a.abc}{ab+abc.a+abc}+\frac{b}{bc+b.acb+abc}+\frac{c}{ac+c+1}\)

= \(\frac{a^2bc}{ab+a^2bc+abc}+\frac{b}{bc+ab^2c+abc}+\frac{c}{ac+c+1}\)

= \(\frac{a^2bc}{ab\left(ac+c+1\right)}+\frac{b}{b\left(ac+c+1\right)}+\frac{c}{ac+c+1}\)

= \(\frac{ac}{\left(ac+c+1\right)}+\frac{1}{\left(ac+c+1\right)}+\frac{c}{ac+c+1}\)

= \(\frac{ac+c+1}{ac+c+1}\)

= 1 (đpcm)

Nếu có gì không hiểu nhớ nt cho mình nha

Y
6 tháng 5 2019

\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a}+\frac{abc}{a\cdot abc+abc+ab}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{1}{a+1+ab}\)

\(=\frac{ab+a+1}{ab+a+1}=1\)

17 tháng 11 2019

\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a}+\frac{abc}{aabc+abc+ab}=\)

\(=\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{1}{ab+a+1}=1\)

17 tháng 11 2019

Thay \(abc=1\) vào biểu thức ta có :

 \(\frac{a.abc}{ab+abc.a+abc}+\frac{b}{bc+b.acb+abc}+\frac{c}{ac+c+1}\)

\(=\frac{a^2bc}{ab+a^2bc+abc}+\frac{b}{bc+ab^2c+abc}+\frac{c}{ac+c+1}\)

\(=\frac{a^2bc}{ab\left(ac+c+1\right)}+\frac{b}{b\left(ac+c+1\right)}+\frac{c}{ac+c+a}\)

\(=\frac{ac}{\left(ac+c+1\right)}+\frac{1}{\left(ac+c+1\right)}+\frac{c}{ac+c+1}\)

\(=\frac{ac+c+1}{ac+c+1}\)

\(=1\left(đpcm\right)\)

Chúc bạn học tốt !!!

12 tháng 6 2017

do abc=1 nên \(\frac{a}{ab+a+1}\)=\(\frac{a}{ab+a+abc}\)=\(\frac{a}{a\left(bc+b+1\right)}\)=\(\frac{1}{bc+b+1}\)

\(\frac{c}{ac+c+1}\)=\(\frac{bc}{abc+bc+b}\)(nhân cả 2 vế cho b)=\(\frac{bc}{bc+b+1}\)

=>\(\frac{a}{ab+a+1}\)+\(\frac{b}{bc+b+1}\)+\(\frac{c}{ac+c+1}\)=\(\frac{bc+b+1}{bc+b+1}\)=1

9 tháng 11 2016

Đặt \(T=\frac{1}{1+a+ab}+\frac{1}{1+b+bc}+\frac{1}{1+c+ac}\) (*)

Ta có: \(abc=1\Rightarrow c=\frac{1}{ab}\).Thay vào (*) ta có:

\(T=\frac{1}{1+a+ab}+\frac{1}{1+b+\frac{1}{a}}+\frac{1}{1+\frac{1}{ab}+\frac{1}{b}}\)

\(=\frac{1}{1+a+ab}+\frac{1}{\frac{a+ab+1}{a}}+\frac{1}{\frac{ab+1+a}{ab}}\)

\(=\frac{1}{1+a+ab}+\frac{a}{a+ab+1}+\frac{ab}{ab+1+a}\)

\(=\frac{1+a+ab}{1+a+ab}=1=VP\) (Đpcm)

 

4 tháng 4 2017

Theo bài ra  ta có : \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)

\(\frac{a}{ab+a+1}=\frac{a}{ab+a+abc}\left(1=abc\right)=\frac{1}{b+1+bc}\)(chia cả tử lẫn mẫu cho a) (1)

\(\frac{c}{ac+c+1}=\frac{bc}{abc+bc+b}=\frac{bc}{1+bc+b}\)(Nhân cả tử lẫn mẫu cho b) (2)

Do đó ta có : 

\(=\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)

\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{1+bc+b}=\frac{1+bc+b}{bc+b+1}=1\)(đpcm) 

21 tháng 12 2016

hay

 

4 tháng 9 2020

Biến đổi tương đương bất đẳng thức và chú ý đến \(x+y+z=1\)Ta được 

\(\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}\ge3\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}-\left(x+y+z\right)^2\ge3\left(x^2+y^2+z^2\right)-\left(x+y+z\right)^2\) ( trừ cả hai vế với (x+y+z)^2 )

\(\Leftrightarrow\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}-\left(x+y+z\right)\ge3\left(x^2+y^2+z^2\right)-\left(x+y+z\right)^2\)

\(\Leftrightarrow\frac{\left(x-z\right)^2}{z}+\frac{\left(y-x\right)^2}{x}+\frac{\left(z-y\right)^2}{y}\ge\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\)

\(\Leftrightarrow\left(x-y\right)^2\left(\frac{1}{x}-1\right)+\left(y-z\right)^2\left(\frac{1}{y}-1\right)+\left(z-x\right)^2\left(\frac{1}{z}-1\right)\ge0\)

Vì x + y + z = 1 nên 1/x; 1/y; 1/z > 1. Do đó bđt cuối cùng luôn đúng 

Đẳng thức xảy ra khi và chỉ khi \(a=b=c=3\)

4 tháng 9 2020

Cách trâu bò :

Ta có : 

\(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{â^2}\ge3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)

\(\Leftrightarrow\left(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}\right):\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge3\)

\(\Leftrightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge3\)

+) \(ab+ac+bc=abc\Leftrightarrow a+b+c=6-\left(ab+bc+ca\right)\)

\(\Leftrightarrow\hept{\begin{cases}6-\left(ab+bc+ca\right)>0\\\left(a+b+c\right)^2=\left[6-\left(ab+bc+ca\right)\right]^2\end{cases}}\)

Còn lại phân tích nốt ra rùi áp dụng bđt cauchy là ra . ( Mình cũng ko chắc biến đổi đoạn đầu đúng chưa , có gì bạn xem lại giùm mình sai bỏ qua )

13 tháng 4 2018

theo bất đẳng thức côsi ta có :

\(\left(a+b\right)^2\ge4ab\)

\(\left(b+c\right)^2\ge4bc\)

\(\left(c+a\right)^2\ge4ca\)

\(\Rightarrow\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\ge64a^2b^2c^2\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

1 tháng 10 2016

\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=\frac{ac}{abc+ac+c}+\frac{abc}{abc^2+abc+ac}+\frac{c}{ac+c+1}\)

\(=\frac{ac}{ac+c+1}+\frac{1}{ac+c+1}+\frac{c}{ac+c+1}=\frac{ac+c+1}{ac+c+1}=1\)