\(P=\frac{\left(x+a\right)\left(x+b\right)}{x}\)

cho a,b,x là các số dương . Tìm GT...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2019

\(\frac{b\left(2a-b\right)}{a\left(b+c\right)}+\frac{c\left(2b-c\right)}{b\left(c+a\right)}+\frac{a\left(2c-a\right)}{c\left(a+b\right)}\le\frac{3}{2}\)

\(\Leftrightarrow\left[2-\frac{b\left(2a-b\right)}{a\left(b+c\right)}\right]+\left[2-\frac{c\left(2b-c\right)}{b\left(c+a\right)}\right]+\left[2-\frac{a\left(2c-a\right)}{c\left(a+b\right)}\right]\ge\frac{9}{2}\)

\(\Leftrightarrow\frac{b^2+2ca}{a\left(b+c\right)}+\frac{c^2+2ab}{b\left(c+a\right)}+\frac{a^2+2bc}{c\left(a+b\right)}\ge\frac{9}{2}\)

Áp dụng BĐT Schwarz, ta có :

\(\frac{b^2}{a\left(b+c\right)}+\frac{c^2}{b\left(c+a\right)}+\frac{a^2}{c\left(a+b\right)}\ge\frac{\left(a+b+c\right)^2}{a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)}=\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}\)( 1 )

\(\frac{ac}{a\left(b+c\right)}+\frac{ab}{b\left(c+a\right)}+\frac{bc}{c\left(a+b\right)}=\frac{c^2}{c\left(b+c\right)}+\frac{a^2}{a\left(a+c\right)}+\frac{b^2}{b\left(a+b\right)}\)           ( 2 )

\(\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+ab+bc+ac}\)

Cộng ( 1 ) với ( 2 ), ta được :

\(\frac{b^2+2ca}{a\left(b+c\right)}+\frac{c^2+2ab}{b\left(c+a\right)}+\frac{a^2+2bc}{c\left(a+b\right)}\)

\(\ge\left(a+b+c\right)^2\left(\frac{1}{2\left(ab+bc+ac\right)}+\frac{2}{a^2+b^2+c^2+ab+bc+ac}\right)\)

\(\ge\left(a+b+c\right)^2\left(\frac{\left(1+2\right)^2}{2\left(ab+bc+ac\right)+2\left(a^2+b^2+c^2+ab+bc+ac\right)}\right)=\frac{9}{2}\)

14 tháng 6 2019

không biết cách này ổn không 

Ta có : \(\frac{b\left(2a-b\right)}{a\left(b+c\right)}=\frac{2-\frac{b}{a}}{\frac{c}{b}+1}\) ; tương tự :...

đặt \(\frac{a}{c}=x;\frac{b}{a}=y;\frac{c}{b}=z\Rightarrow xyz=1\)

\(\Sigma\frac{2-y}{z+1}\le\frac{3}{2}\)          

\(\Leftrightarrow2\Sigma xy^2+2\Sigma x^2+\Sigma xy\ge3\Sigma x+6\)( quy đồng khử mẫu )

\(\Leftrightarrow\Sigma\frac{x}{y}\ge\Sigma x\)( xyz = 1 )           ( luôn đúng )

\(\Rightarrowđpcm\)

6 tháng 1 2018

Bài 2:

Ta cóB=\(\frac{8}{a^3b^3c^3}\)

Áp dụng BĐT cô-si, ta có 

\(a+b+c\ge3\sqrt[3]{abc}\Rightarrow3\sqrt[3]{abc}\le6\Rightarrow\sqrt[3]{abc}\le2\Rightarrow abc\le8\Rightarrow a^3b^3c^3\le512\)

=>\(\frac{8}{a^3b^3c^3}\ge\frac{8}{512}=\frac{1}{64}\)

dấu = xảy ra <=>a=b=c=2

^_^

6 tháng 1 2018

Bài 1:,

Đặt ..=A

Ta có \(A=\frac{\left(c+a\right)\left(c+b\right)}{a+b}+\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(b+a\right)\left(b+c\right)}{a+c}\)

Đặt \(a+b=x;b+c=y;c+a=z\) =>x+y+z=2

Ta có A=\(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\)

Áp dụng BĐT cô-si, ta có \(\frac{xy}{z}+\frac{yz}{x}\ge2\sqrt{\frac{xy^2z}{zx}}=2y\)

Tương tự thì 2A\(\ge2\left(x+y+z\right)=4\Rightarrow A\ge2\left(ĐPCM\right)\)

Dấu = xảy ra <=>a=b=c=1/3

^_^

5 tháng 5 2020

Đặt S=\(\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{x^2+2xy+y^2}{xy}=\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{x^2+y^2}{xy}+2\)

Áp dụng BĐT Cosi ta có: \(x+y\ge2\sqrt{xy}\Leftrightarrow xy< \frac{\left(x+y\right)^2}{4}\)

Do đó \(S\ge\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{4\left(x^2+y^2\right)}{\left(x+y\right)^2}+2\ge2\sqrt{\frac{\left(x+y\right)^2}{x^2+y^2}\cdot\frac{4\left(x^2+y^2\right)}{\left(x+y\right)^2}}+2=6\)

Dấu "=" xảy ra <=> x=y

Vậy MinS=6 đạt được khi x=y

5 tháng 5 2020

Ta có: 

\(\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{xy}\)

\(\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{2xy}+\frac{\left(x+y\right)^2}{2xy}\)

\(\ge\left(x+y\right)^2.\frac{4}{\left(x+y\right)^2}+\frac{4xy}{2xy}=6\)

Dấu "=" xảy ra <=> x = y 

Vậy min \(\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{xy}\)= 6 đạt tại x = y.

16 tháng 7 2021

lại bị trùng rồi quỳnh ơi , https://olm.vn/hoi-dap/detail/76355556031.html

DD
16 tháng 7 2021

Câu hỏi của Con Heo - Toán lớp 8 - Học trực tuyến OLM