
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(A=a\left(a+1\right)\)
\(A=a^2+1a\)
\(A=a^2+2\cdot\frac{1}{2}\cdot a+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2\)
\(A=\left(a+\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2\)
\(A=\left(a+\frac{1}{2}\right)^2-\frac{1}{4}\)
Có \(\left(a+\frac{1}{2}\right)^2\ge0\)\(\Rightarrow\left(a+\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
=> GTNN của \(A=a\left(a+1\right)\)là \(-\frac{1}{4}\)với \(a=-\frac{1}{2}\) ; \(a+\frac{1}{2}=0\)

a) \(A=\left(x+1\right)\left(2x-1\right)\)
\(A=2x^2+x-1\)
\(A=2\left(x^2+\frac{1}{2}x-\frac{1}{2}\right)\)
\(A=2\left[x^2+2\cdot x\cdot\frac{1}{4}+\left(\frac{1}{4}\right)^2-\frac{9}{16}\right]\)
\(A=2\left[\left(x+\frac{1}{4}\right)^2-\frac{9}{16}\right]\)
\(A=2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\ge\frac{-9}{8}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x+\frac{1}{4}=0\Leftrightarrow x=\frac{-1}{4}\)
Vậy Amin = -9/8 khi và chỉ khi x = -1/4
b) \(B=4x^2-4xy+2y^2+1\)
\(B=\left(2x\right)^2-2\cdot2x\cdot y+y^2+y^2+1\)
\(B=\left(2x-y\right)^2+y^2+1\ge1\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-y=0\\y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}\Rightarrow}}x=y=0\)
Vậy Bmin = 1 khi và chỉ khi x = y = 0

\(A=a^2+a\)
\(=a^2+2\cdot a\cdot\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\)
\(=\left(a+\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\forall a\)
\(A=-\frac{1}{4}\Leftrightarrow\left(a+\frac{1}{2}\right)^2=0\Leftrightarrow a=-\frac{1}{2}\)
Vậy \(A_{min}=-\frac{1}{4}\Leftrightarrow a=-\frac{1}{2}\)

\(3x^2-6x+1\)
\(=3\left(x^2-2x+\frac{1}{3}\right)\)
\(=3\left(x-1\right)^2-\frac{2}{3}\)
vì \(3\left(x-2\right)^2\ge0\)nên \(3\left(x-1\right)^2-\frac{2}{3}\ge\frac{2}{3}\)
vậy GTNN của biểu thức =2/3
minh tống ơi chắc là sai đấy

Đổi |1+x|=|-1-x|
\(\Rightarrow A=\left|x\right|+\left|-1-x\right|\)
Áp dụng BĐTGTTĐ |A|+|B|\(\ge\)|A+B|
\(\Rightarrow A=\left|x\right|+\left|-1-x\right|\)\(\ge\left|x+\left(-1\right)-x\right|=1\)
Dấu = xảy ra khi x.(-1-x)\(\ge\)0
Suy ra \(\hept{\begin{cases}x=0\\x=-1\end{cases}}\)
Vậy Min A= 1 \(\Leftrightarrow\)x=\(\hept{\begin{cases}0\\-1\end{cases}}\)
K chắc lắm sai bỏ qua nhá

Bạn ghi lại đầu bài được không có phải thế này à
\(|x-1|.\left(6-|x-1|\right)\)

\(P=\dfrac{a^2\left(b+c\right)+b^2\left(a+c\right)}{abc}=\dfrac{c\left(a^2+b^2\right)+ab\left(a+b\right)}{abc}\)
\(P=\dfrac{a^2+b^2}{ab}+\dfrac{a+b}{c}=\dfrac{a^2+b^2}{ab}+\dfrac{a+b}{\sqrt{a^2+b^2}}\ge\dfrac{a^2+b^2}{ab}+2\sqrt{\dfrac{ab}{a^2+b^2}}\)
Đặt \(\sqrt{\dfrac{a^2+b^2}{ab}}=x\ge\sqrt{2}\)
\(P=x^2+\dfrac{2}{x}=\left(1-\dfrac{1}{2\sqrt{2}}\right)x^2+\dfrac{x^2}{2\sqrt{2}}+\dfrac{1}{x}+\dfrac{1}{x}\)
\(P\ge\left(1-\dfrac{1}{2\sqrt{2}}\right).2+3\sqrt[3]{\dfrac{x^2}{2\sqrt{2}x^2}}=2+\sqrt{2}\)
\(P_{min}=2+\sqrt{2}\) khi \(x=\sqrt{2}\Rightarrow a=b\) hay tam giác vuông cân

Bài 1 :
a, \(A=x\left(x-6\right)+10\)
=x^2 - 6x + 10
=x^2 - 2.3x+9+1
=(x-3)^2 +1 >0 Với mọi x dương
Các bạn ơi, mình giải được rồi nhé!
Cảm ơn mọi người nhiều!
A= a^2+a=a^2+2*1/2a+1/4-1/4
=(a+1/2)^2-1/4>=-1/4
Dấu = xảy ra khi a=-1/2
vạy MinA=-1/4 tại a=1/2