K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2020

\(x^4+2x^3-3x^2-8x-4=0\)

\(\Leftrightarrow\left(x^4+2x^3+x^2\right)-\left(4x^2-8x-4\right)=0\)

\(\Leftrightarrow x^2\left(x^2+2x+1\right)-4\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x+1\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x^2-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\pm2\end{cases}}}\)

4 tháng 3 2019

Với dạng bài này ta chỉ việc chia hoocne là ra nhé!

\(C1:x^4+x^3-8x^2-9x-9=0\\ \Leftrightarrow\left(x-3\right)\left(x^3+4x^2+4x+3\right)\\ \Leftrightarrow\left(x-3\right)\left(x+3\right)\left(x^2+x+1\right)\\ \Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=0\\x^2+x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\\x^2+x+1=0\left(VN\right)\end{matrix}\right.\)

\(C2:x^4+2x^3-3x^2-8x-4=0\\ \Leftrightarrow\left(x+1\right)\left(x^3+x^2-4x-4\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x+1\right)\left(x^2-4\right)=0\\ \Leftrightarrow\left(x+1\right)^2\left(x^2-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x+1\right)^2=0\\x^2-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-2\end{matrix}\right.\)

4 tháng 3 2019
https://i.imgur.com/1LBiPm6.jpg
12 tháng 5 2022

*vn:vô nghiệm.

a. \(\left(x^2-2\right)\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2=0\\x^2+x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)=0\\\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\left(vn\right)\end{matrix}\right.\)

\(\Leftrightarrow x=\pm\sqrt{2}\)

-Vậy \(S=\left\{\pm\sqrt{2}\right\}\).

b. \(16x^2-8x+5=0\)

\(\Leftrightarrow16x^2-8x+1+4=0\)

\(\Leftrightarrow\left(4x-1\right)^2+4=0\) (vô lí)

-Vậy S=∅.

c. \(2x^3-x^2-8x+4=0\)

\(\Leftrightarrow x^2\left(2x-1\right)-4\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\pm2\end{matrix}\right.\)

-Vậy \(S=\left\{\dfrac{1}{2};\pm2\right\}\).

d. \(3x^3+6x^2-75x-150=0\)

\(\Leftrightarrow3x^2\left(x+2\right)-75\left(x+2\right)=0\)

\(\Leftrightarrow3\left(x+2\right)\left(x^2-25\right)=0\)

\(\Leftrightarrow3\left(x+2\right)\left(x+5\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\pm5\end{matrix}\right.\)

-Vậy \(S=\left\{-2;\pm5\right\}\)

29 tháng 1 2022

1.

<=> \(\left[{}\begin{matrix}4-3x=0\\10-5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=2\end{matrix}\right.\)

2.

<=>\(\left[{}\begin{matrix}7-2x=0\\4+8x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)

3.

<=>\(\left[{}\begin{matrix}9-7x=0\\11-3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{7}\\x=\dfrac{11}{3}\end{matrix}\right.\)

4.

<=>\(\left[{}\begin{matrix}7-14x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=2\end{matrix}\right.\)

5. 

<=>\(\left[{}\begin{matrix}\dfrac{7}{8}-2x=0\\3x+\dfrac{1}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{16}\\x=-\dfrac{1}{9}\end{matrix}\right.\)

6,7. ko đủ điều kiện tìm

29 tháng 1 2022

Oki pạn cảm ơn

 

27 tháng 8 2018

a)  \(x^3+3x^2+3x+2=0\)

<=>  \(x^3+x^2+x+2x^2+2x+2=0\)

<=>  \(x\left(x^2+x+1\right)+2\left(x^2+x+1\right)=0\)

<=>  \(\left(x+2\right)\left(x^2+x+1\right)=0\)

tự làm

b) \(x^4-2x^3+2x-1=0\)

<=>  \(\left(x^4-3x^3+3x^2-x\right)+\left(x^3-3x^2+3x-1\right)=0\)

<=>  \(x\left(x^3-3x^2+3x-1\right)+\left(x^3-3x^2+3x-1\right)=0\)

<=>  \(\left(x^3-3x^2+3x-1\right)\left(x+1\right)=0\)

<=>  \(\left(x-1\right)^3\left(x+1\right)=0\)

tự làm

27 tháng 8 2018

c)   \(x^4-3x^3-6x^2+8x=0\)

<=>   \(x\left(x^3-3x^2-6x+8\right)=0\)

<=>  \(x\left[\left(x^3+x^2-2x\right)-\left(4x^2+4x-8\right)\right]=0\)

<=>\(x\left[x\left(x^2+x-2\right)-4\left(x^2+x-2\right)\right]=0\)

<=>   \(x\left(x-4\right)\left(x^2+x-2\right)=0\)

<=> \(x\left(x-4\right)\left(x-1\right)\left(x+2\right)=0\)

tự làm

27 tháng 8 2018

a ) \(x^3+3x^2+3x+2=0\)

\(\Leftrightarrow x^3+3x^2+3x+1+1=0\)

\(\Leftrightarrow\left(x+1\right)^3+1=0\)

\(\Leftrightarrow\left(x+1\right)^3=-1\)

\(\Leftrightarrow x+1=-1\)

\(\Leftrightarrow x=-2\)

Vậy \(x=-2\)

b ) \(x^4-2x^3+2x-1=0\)

\(\Leftrightarrow x^4-1-2x\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2+1-2x\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)^3\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)^3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

27 tháng 8 2018

a, \(x^3+3x^2+3x+2=0\)

\(\Leftrightarrow\left(x^3+2x^2\right)+\left(x^2+2x\right)+\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x^2+x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=0\end{matrix}\right.\)

b, \(x^4-2x^3+2x-1=0\)

\(\Leftrightarrow\left(x^4-x^3\right)-\left(x^3-x^2\right)-\left(x^2-x\right)+\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[\left(x^3-x^2\right)\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)^3=0\)

\(\Leftrightarrow x=1\)

3 tháng 2 2019

\(2x^3+7x^2+7x+2=0\)

\(\Leftrightarrow\left(2x^3+4x^2\right)+\left(3x^2+6x\right)+\left(x+2\right)=0\)

\(\Leftrightarrow2x^2\left(x+2\right)+3x\left(x+2\right)+\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(2x^2+3x+1\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left[2x\left(x+1\right)+\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+1\right)\left(2x+1\right)=0\)

.......................................................................................

\(x^3-8x^2-8x+1=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)-8x\left(x+1\right)=0\)

......................................................................................

11 tháng 2 2019

cảm ơn nha 

29 tháng 8 2021

\(a,x^4-2x^3+5x^2-10x=0\\ \Leftrightarrow x^3\left(x-2\right)+5x\left(x-2\right)=0\\ \Leftrightarrow x\left(x^2+5\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x^2+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x\in\varnothing\left(x^2+5>0\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

\(b,\left(3x+5\right)^2=\left(2x-2\right)^2\\ \Leftrightarrow\left(3x+5\right)^2-\left(2x-2\right)^2=0\\ \Leftrightarrow\left(3x+5+2x-2\right)\left(3x+5-2x+2\right)=0\\ \Leftrightarrow\left(5x+3\right)\left(x+7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{5}\\x=-7\end{matrix}\right.\)

\(c,x^3-2x^2+x=0\\ \Leftrightarrow x\left(x-1\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

\(d,x^2\left(x-1\right)-4x^2+8x-4=0\\ \Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

29 tháng 8 2021

a) \(x^4-2x^3+5x^2-10x=0\\ \Rightarrow\left(x^4-2x^3\right)+\left(5x^2-10x\right)=0\\ \Rightarrow x^3\left(x-2\right)+5x\left(x-2\right)=0\\ \Rightarrow\left(x^3+5x\right)\left(x-2\right)=0\\ \Rightarrow x\left(x^2+5\right)\left(x-2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x^2+5=0\\x-2=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=\pm\sqrt{5}\\x=2\end{matrix}\right.\)

Vậy \(x=\left\{-\sqrt{5};0;\sqrt{5};2\right\}\)

b) \(\left(3x+5\right)^2=\left(2x-2\right)^2\\ \Rightarrow\left[{}\begin{matrix}3x+5=2x-2\\3x+5=-2x+2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-7\\x=-\dfrac{3}{5}\end{matrix}\right.\)

c) \(x^3-2x^2+x=0\\ \Rightarrow x\left(x^2-2x+1\right)=0\\ \Rightarrow x\left(x-1\right)^2=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\\left(x-1\right)^2=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

vậy ...

 

d) \(x^2\left(x-1\right)-4x^2+8x-4=0\\ x^2\left(x-1\right)-\left(4x^2-8x+4\right)=0\\ x^2\left(x-1\right)-\left(2x-2\right)^2=0\\ \Rightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Rightarrow\left(x-1\right)\left[x^2-4\left(x-1\right)\right]=0\\ \Rightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Rightarrow\left(x-1\right)\left(x-2\right)^2=0\)

    \(\Rightarrow\left[{}\begin{matrix}x-1=0\\\left(x-2\right)^2=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

\(\left(4-3x\right)\left(10x-5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}4-3x=0\\10x-5=0\end{cases}\Rightarrow\orbr{\begin{cases}3x=4\\10x=5\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{4}{3}\\x=\frac{1}{2}\end{cases}}}\)

\(\left(7-2x\right)\left(4+8x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}7-2x=0\\4+8x=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=7\\8x=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{1}{2}\end{cases}}}}\)

rồi thực hiện đến hết ... 

Brainchild bé ngây thơ qus e , ko thực hiện đến hết như thế đc đâu :>

\(\left(x-3\right)\left(2x-1\right)=\left(2x-1\right)\left(2x+3\right)\)

\(2x^2-7x+3=4x^2+4x-3\)

\(2x^2-7x+3-4x^2-4x+3=0\)

\(-2x^2-11x+6=0\)

\(2x^2+11x-6=0\)

\(2x^2+12x-x-6=0\)

\(2x\left(x+6\right)-\left(x+6\right)=0\)

\(\left(x+6\right)\left(2x-1\right)=0\)

\(x+6=0\Leftrightarrow x=-6\)

\(2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)

\(3x-2x^2=0\)

\(x\left(2x-3\right)=0\)

\(x=0\)

\(2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)

Tự lm tiếp nha 

15 tháng 2 2020
https://i.imgur.com/F0lkk7k.jpg
15 tháng 2 2020

phần cuối mk chụp ko đc hết . chỗ cuối là bằng \(\frac{-5}{-3}\)=\(\frac{5}{3}\)