
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(A=6x-x^2+5=-\left(x^2-6x-5\right)\)
\(=-\left(x^2-6x+9-14\right)=-\left[\left(x-3\right)^2-14\right]\)
\(=-\left[\left(x-3\right)^2\right]+14\le14\)
Vậy \(A_{max}=14\Leftrightarrow x=3\)

super easy . tập làm đi cho não có nếp nhăn Giang ơi :)
Mik làm bài 3 nha
Để \(\frac{2}{x^2-6x+17}\)đạt GTLN thì
\(x^2-6x+17\)đạt GTNN
Mà \(x^2-6x\ge0\)Do 6x mang dấu trừ
Suy ra \(x^2-6x+17\ge17\)
Suy ra \(x^2-6x+17\)đạt GTNN khi
\(x^2-6x+17=17\)
\(\Leftrightarrow x^2-6x=0\)
Dấu ''='' xảy ra khi:
\(\hept{\begin{cases}x=0\\x=6\end{cases}}\)
Vậy \(\frac{2}{x^2-6x+17}\)đạt GTLN tại \(\hept{\begin{cases}x=0\\x=6\end{cases}}\)
Câu cuôi tương tự

P(x^2+x+1)=x^2-x+1
=>Px^2+Px+P-x^2+x-1=0
=>(Px^2-x^2)+(Px+x)+(P-1)=0
=>x^2(P-1)+x(P+1)+(P-1)=0 (1)
coi đây là 1 pt bậc 2 ẩn x ,để P tổn tại max min thì phải có x thoả mãn max,min đó,tức là (1) có nghiệm
Xét delta = (P+1)^2-4(P-1)^2 >/ 0 =>P^2+2P+1-4(P^2-2P+1)=P^2+2P+1-4P^2+8P-4=-3P^2+10P-3
=(P-3)(1-3P) >/ 0 => 1/3<=P<=3 => minP=1/3,maxP=3

Ta có : A = x(x + 1)(x2 + x - 4)
= (x2 + x)(x2 + x - 4)
Đặt x2 + x = t
Khi đó A = t(t - 4)
= t2 - 4t = t2 - 4t + 4 - 4 = (t - 2)2 - 4 \(\ge\)-4
Dấu "=" xảy ra <=> t - 2 = 0
=> t = 2
=> x2 + x = 2
=> x2 + x - 2 = 0
=> x2 + 2x - x - 2 = 0
=> x(x + 2) - (x + 2) = 0
=> (x - 1)(x + 2) = 0
=> \(\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
Vậy Min A = -4 <=> x \(\in\left\{1;-2\right\}\)
A = x( x + 1 )( x2 + x - 4 )
= ( x2 + x )( x2 + x - 4 )
Đặt t = x2 + x
A <=> t( t - 4 )
= t2 - 4t
= ( t2 - 4t + 4 ) - 4
= ( t - 2 )2 - 4
= ( x2 + x - 2 )2 - 4 ≥ -4 ∀ x
Đẳng thức xảy ra <=> x2 + x - 2 = 0
<=> x2 - x + 2x - 2 = 0
<=> x( x - 1 ) + 2( x - 1 ) = 0
<=> ( x - 1 )( x + 2 ) = 0
<=> \(\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
=> MinA = -4 <=> x = 1 hoặc x = -2

Max:
\(M=\frac{x^2+xy+y^2}{x^2+y^2}=1+\frac{xy}{x^2+y^2}\le1+\frac{xy}{2\left|xy\right|}\le1+\frac{xy}{2xy}=1+\frac{1}{2}=\frac{3}{2}\)
Dấu "=" xảy ra tại x=y
A = -5 - (x - 1)(x + 2)
= -5 - [x(x + 2) - 1(x + 2)]
= -5 - (x2 + 2x - x - 2)
= -5 - x2 - 2x - x + 2 = -5 - x2 - x + 2 = (-5 + 2) - x2 - x = -3 - x2 - x
= -(x + x2 + 3) = -(x2 + x + 3)
= -[x2 + 2.x.1/2 + (1/2)2 ] - 11/4
= -(x + 1/2)2 - 11/4
Vì (x + 1/2)2 \(\ge\)0\(\forall\)x
=> -(x + 1/2)2 \(\le\)0\(\forall\)x
=> \(-\left(x+\frac{1}{2}\right)^2-\frac{11}{4}\ge-\frac{11}{4}\forall x\)
Dấu " = " xảy ra khi (x + 1/2)2 = 0 => x = -1/2
Vậy Amax = -11/4 khi x = -1/2
\(A=-5-\left(x-1\right)\left(x+2\right)\)
\(=-5-\left(x^2+x-2\right)\)
\(=-5-x^2-x+2\)
\(=-x^2-x-3\)
\(=-x^2-x-\frac{1}{4}-3+\frac{1}{4}\)
\(=-\left(x^2+x+\frac{1}{4}\right)-\frac{11}{4}\)
\(=-\left(x^2+2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2\right)-\frac{11}{4}\)
\(=-\left(x+\frac{1}{2}\right)^2-\frac{11}{4}\)
Ta có \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
\\(-\left(x+\frac{1}{2}\right)^2\le0\)
\(-\left(x+\frac{1}{2}\right)^2-\frac{1}{4}\le-\frac{1}{4}\)
Dấu = xảy ra
\(\Leftrightarrow x+\frac{1}{2}=0\Rightarrow x=-\frac{1}{2}\)