K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2016

đề đúng \(x^4+y^4\ge xy^3+x^3y\)

\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x^2+y^2+xy\right)\ge0\)(Đpcm)

Dấu = khi x=y

15 tháng 11 2018

bđt <=> x4 + y4 - x3y - xy3 ≥ 0

<=> x(x3 - y3) - y(x3- y3) ≥ 0

<=> x(x - y)(x2 + xy + y2) - y(x - y)(x2 + xy + y2) ≥ 0

<=> (x - y)2(x2 + xy + y2) ≥ 0 (1)

Ta có: (x - y)2 ≥ 0 ∀x, y

x2 + xy + y2 = (x + \(\dfrac{1}{2}\)y)2 + \(\dfrac{3}{4}\)y2 ≥ 0 ∀ x, y

=> (1) luôn đúng

Dấu "=" xảy ra <=> x = y

16 tháng 11 2018

theo bđt cauchy schwars ta có:

\(\left\{{}\begin{matrix}x^4+y^4\ge2x^2y^2\\x^4+x^2y^2\ge2x^3y\\y^4+x^2y^2\ge2xy^3\end{matrix}\right.\)

\(\Leftrightarrow2\left(x^4+y^4\right)+2x^2y^2\ge2\left(xy^3+x^3y\right)+2x^2y^2\)

\(\Leftrightarrow x^4+y^4\ge xy^3+x^3y\)

vậy đpcm

17 tháng 12 2019

bđt \(\Leftrightarrow\)\(\left(x-y\right)^2\left(x^2+y^2+\frac{3}{2}xy\right)\ge0\) đúng với mọi x, y

22 tháng 12 2022

Bài 1:

\(\left\{{}\begin{matrix}xy+2=2x+y\left(1\right)\\2xy+y^2+3y=6\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Rightarrow xy-y+2-2x=0\)

\(\Rightarrow y\left(x-1\right)-2\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(y-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Với \(x=1\). Thay vào (2) ta được:

\(2y+y^2+3y=6\)

\(\Leftrightarrow y^2+5y-6=0\)

\(\Leftrightarrow y^2+y-6y-6=0\)

\(\Leftrightarrow y\left(y+1\right)-6\left(y+1\right)=0\)

\(\Leftrightarrow\left(y+1\right)\left(y-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=6\end{matrix}\right.\)

Với \(y=2\). Thay vào (2) ta được:

\(2x.2+2^2+3.2=6\)

\(\Leftrightarrow4x+4+6=6\)

\(\Leftrightarrow x=-1\)

Vậy hệ phương trình đã cho có nghiệm (x,y) \(\in\left\{\left(1;-1\right),\left(1;6\right),\left(-1;2\right)\right\}\)

22 tháng 12 2022

Bài 2:

\(f\left(x\right)=x^4+6x^3+11x^2+6x\)

\(=x\left(x^3+6x^2+11x+6\right)\)

\(=x\left(x^3+x^2+5x^2+5x+6x+6\right)\)

\(=x\left[x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\right]\)

\(=x\left(x+1\right)\left(x^2+5x+6\right)\)

\(=x\left(x+1\right)\left(x^2+3x+2x+6\right)\)

\(=x\left(x+1\right)\left[x\left(x+3\right)+2\left(x+3\right)\right]\)

\(=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

b) Ta có: \(f\left(x\right)+1=x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)

\(=x\left(x+3\right).\left(x+1\right)\left(x+2\right)+1\)

\(=\left(x^2+3x\right).\left(x^2+3x+2\right)+1\)

\(=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1\)

\(=\left(x^2+3x+1\right)^2\)

Vì x là số nguyên nên \(f\left(x\right)+1\) là số chính phương.

30 tháng 8 2019

\(\left(x+y\right)^2\left(x^2+y^2-xy\right)=\left(x+y\right)\left(x+y\right)\left(x^2+y^2-xy\right)=\left(x+y\right)\left(x^3+y^3\right)\)

\(=x^4+y^4+xy^3+x^3y=x^4+y^4+xyy^2+xyx^2=x^4+y^4+3y^2+3x^2\)

Bài 1: Chứng minh rằng với mọi số thực khác không x, y ta có: \({x^2\over y^2} + {y^2\over x^2} + 4 ≥ 3({x\over y} + {y\over x})\) Bài 2: Chứng minh rằng với mọi số thực x,y ta có: \(xy(x-2)(y+6)+12x^2-24x+3y^2+18y+36>0\) Bài 3: Cho x,y,z thuộc R. Chứng minh rằng: \(1019x^2+18y^4+1007z^2\geq 30xy^2+6y^2z+2008zx\) Bài 4: Cho a,b>=4. Chứng minh rằng: \(a^2+b^2+ab>=6(a+b)\) Bài 5:Cho x,y>=1. Chứng minh rằng: \(x\sqrt {y-1}+y \sqrt {x-1} \leq...
Đọc tiếp

Bài 1: Chứng minh rằng với mọi số thực khác không x, y ta có:

\({x^2\over y^2} + {y^2\over x^2} + 4 ≥ 3({x\over y} + {y\over x})\)

Bài 2: Chứng minh rằng với mọi số thực x,y ta có:

\(xy(x-2)(y+6)+12x^2-24x+3y^2+18y+36>0\)

Bài 3: Cho x,y,z thuộc R. Chứng minh rằng:

\(1019x^2+18y^4+1007z^2\geq 30xy^2+6y^2z+2008zx\)

Bài 4: Cho a,b>=4. Chứng minh rằng: \(a^2+b^2+ab>=6(a+b)\)

Bài 5:Cho x,y>=1. Chứng minh rằng: \(x\sqrt {y-1}+y \sqrt {x-1} \leq xy\)

Bài 6: Cho x,y>=1. Chứng minh rằng: \({1\over 1+x^2}+{1\over 1+y^2}\geq {2\over 1+xy}\)

Bài 7: Chứng minh rằng với mọi số thực a,b ta có:

\(2(a^4+b^4)\geq ab^3+a^3b+2a^2b^2\)

Bài 8: Cho hai số thực x,y khác không. Chứng minh rằng:

\({4x^2y^2\over (x^2+y^2)^2}+{x^2\over y^2}+{y^2\over x^2}\geq 3\)

Bài 9: Cho các số thực a,b cùng dấu. Chứng minh bất đẳng thức:

\(({(a^2+b^2)\over 2})^3\leq({(a^3+b^3)\over 2})^2\)

Bài 10: Cho các số thực dương a,b. Chứng minh các bất đẳng thức sau:

\({a^2b\over(2a^3+b^3)}+{2\over 3} \leq {(a^2+2ab)\over (2a^2+b^2)}\)

Bài 11: Cho các số thực a,b không đồng thời bằng 0. Chứng minh:

\({2ab\over (a^2+4b^2)}+{b^2\over (3a^2+2b^2)}\leq {3\over 5}\)

@Akai Haruma

12
12 tháng 6 2018

Bài 1. Áp dụng BĐT : ( x - y)2 ≥ 0 ∀xy

⇒ x2 + y2 ≥ 2xy

\(\dfrac{x^2}{xy}+\dfrac{y^2}{xy}\) ≥ 2

\(\dfrac{x}{y}+\dfrac{y}{x}\) ≥ 2

⇒ 3( \(\dfrac{x}{y}+\dfrac{y}{x}\)) ≥ 6 ( 1)

CMTT : \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\) ≥ 2

\(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\)\(6\) ( 2)

Từ ( 1 ; 2) ⇒ \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\) ≥ 3( \(\dfrac{x}{y}+\dfrac{y}{x}\))

Đẳng thức xảy ra khi : x = y

12 tháng 6 2018

Bài 4. Do : a ≥ 4 ; b ≥ 4 ⇒ ab ≥ 16 ( * ) ; a + b ≥ 8 ( ** )

Áp dụng BĐT Cauchy , ta có : a2 + b2 ≥ 2ab = 2.16 = 32 ( *** )

Từ ( * ; *** ) ⇒ a2 + b2 + ab ≥ 16 + 32 = 48 ( 1 )

Từ ( ** ) ⇒ 6( a + b) ≥ 48 ( 2)

Từ ( 1 ; 2 ) ⇒a2 + b2 + ab ≥ 6( a + b)

Đẳng thức xảy ra khi a = b = 4