K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2015

Ta có: (a-b)2 ≥ 0 <=> a- 2ab + b2 ≥ 0 <=> a2 + b2 ≥ 2ab (1)

Tương tự: b2 + c2 ≥ 2bc (2) và a+c2 ≥ 2ac (3)

Cộng (1), (2) và (3) vế theo vế: 2a2 +2b2 +2c≥ 2ab +2bc +2ca

Vậy: a2 +b2 +c≥ ab +bc +ca (chia 2 vế cho 2)

11 tháng 2 2020

Ta có:

\(\left(a+b\right)^2\ge0\)

\(\Rightarrow a^2+2ab+b^2\ge0\)

\(\Rightarrow a^2+b^2\ge2ab\) (1).

\(\left(b+c\right)^2\ge0\)

\(\Rightarrow b^2+2bc+c^2\ge0\)

\(\Rightarrow b^2+c^2\ge2bc\) (2).

\(\left(c+a\right)^2\ge0\)

\(\Rightarrow c^2+2ca+a^2\ge0\)

\(\Rightarrow c^2+a^2\ge2ac\) (3).

Cộng theo vế (1), (2) và (3) ta được:

\(a^2+b^2+b^2+c^2+a^2+c^2\ge2ab+2bc+2ca\)

\(\Rightarrow2a^2+2b^2+2c^2\ge2.\left(ab+bc+ca\right)\)

\(\Rightarrow2.\left(a^2+b^2+c^2\right)\ge2.\left(ab+bc+ca\right)\)

\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\) (*).

Vì a, b, c là độ dài ba cạnh của tam giác (gt).

\(\left\{{}\begin{matrix}a+b>c\\b+c>a\\c+a>b\end{matrix}\right.\) (theo bất đẳng thức trong tam giác).

=> \(\left\{{}\begin{matrix}ac+bc>c^2\left(4\right)\\ab+ac>a^2\left(5\right)\\bc+ab>b^2\left(6\right)\end{matrix}\right.\)

Cộng theo vế (4), (5) và (6) ta được:

\(ac+bc+ab+ac+bc+ab>a^2+b^2+c^2\)

\(\Rightarrow2ab+2bc+2ac>a^2+b^2+c^2\)

\(\Rightarrow2.\left(ab+bc+ca\right)>a^2+b^2+c^2\) (**).

Từ (*) và (**) => \(ab+bc+ca\le a^2+b^2+c^2< 2.\left(ab+bc+ca\right)\left(đpcm\right).\)

Chúc bạn học tốt!

11 tháng 2 2020

Theo BĐTBĐT tam giác ta có:
a<b+c
=>a2<ab+ac
b<c+a
=>b2<bc+ba
c<a+b
=>c2<ca+cb
Cộng vế với vế 3 BĐT trên ta được:
a2+b2+c2<2(ab+bc+ca)(1)

Ta có (a−b)2+(b−c)2+(c−a)2≥0 với mọi a,b,c là độ dài 3 cạnh của tam giác
<=>a2−2ab+b2+b2−2bc+c2+c2−2ca+a2≥0
<=>2(a2+b2+c2)≥2(ab+bc+ca)
<=>ab+bc+ca≤a2+b2+c2(2)
Dấu = xảy ra khi a=b=c<=> tam giác đó đều
(1),(2)=>đpcm

19 tháng 12 2015

nguyễn hồng quân đấy là phim hành động nhé chứ không phải phim hoạt hình nhé bạn !!!

6 tháng 1 2019

\(a^2+b^2+c^2=ab+bc+ca\)

\(\Rightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)

\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)

\(\Rightarrow2a^2+2b^2+2c^2-\left(2ab+2bc+2ca\right)=0\)

\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)    (1)

Vì \(\left(a-b\right)^2\ge0;\left(b-a\right)^2\ge0;\left(c-a\right)^2\ge0\)

Nên (1) \(\Leftrightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\)     \(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\)

\(\Leftrightarrow a=b=c\left(đpcm\right)\)

Bình phương 2 vế ta được

2a2+2b2+2c2=2ab+2bc+2ac

Lấy VT trừ VP ta được

(a-b)2+(b-c)2+(c-a)2=0

=>a=b=c=0

14 tháng 8 2021

Ta có: \(\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)=\left(a^2+ab+bc+ca\right)\left(b^2+ab+bc+ca\right)\left(c^2+ab+bc+ca\right)=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)

6 tháng 11 2018

a2+b2+c2\(\ge\) ab + bc + ca 

\(\Leftrightarrow a^2+b^2+c^2-ab-ba-ca\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\left(a^2+b^2-2ab\right)+\left(b^2+c^2-2bc\right)+\left(c^2+a^2-2ca\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)   (BĐT đúng)

Do đó \(a^2+b^2+c^2\ge ab+bc+ac\)   là BĐT đúng.

3 tháng 10 2020

a2 + b2 + c2 ≥ ab + bc + ca

<=> 2( a2 + b2 + c2 ) ≥ 2( ab + bc + ca )

<=> 2a2 + 2b2 + 2c2 ≥ 2ab + 2bc + 2ca

<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca ≥ 0

<=> ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( c2 - 2ca + a2 ) ≥ 0

<=> ( a - b )2 + ( b - c )2 + ( c - a )2 ≥ 0 ( đúng )

Vậy bđt được chứng minh

Dấu "=" xảy ra <=> a = b = c