K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2016

\(VT=x^2+y^2+z^2+3-\frac{y^2\left(x^2+1\right)}{y^2+1}-\frac{z^2\left(y^2+1\right)}{z^2+1}-\frac{x^2\left(z^2+1\right)}{x^2+1}\)

\(\le x^2+y^2+z^2+3-\frac{y^2\left(x^2+1\right)+z^2\left(y^2+1\right)+x^2\left(z^2+1\right)}{2}\)

\(\le\frac{x^2+y^2+z^2}{2}+3-\frac{x^2y^2+y^2z^2+z^2x^2}{2}\)

\(\le\frac{x^2+y^2+z^2}{2}+3\)

Mặt khác ta có: \(x^2+y^2+z^2=1-2\left(xy+yz+zx\right)\le1\)

\(\Rightarrow VT\le\frac{7}{2}\).Dấu "=" xảy ra tại \(\left(0;0;1\right)\) và các hoán vị của nó

4 tháng 6 2020

Với \(\hept{\begin{cases}x,y,z\ge0\\x+y+z=1\end{cases}}\), ta cần chứng minh: \(\frac{x^2+1}{y^2+1}+\frac{y^2+1}{z^2+1}+\frac{z^2+1}{x^2+1}\le\frac{7}{2}\)

\(\Leftrightarrow2\Sigma_{cyc}\left(x^2+1\right)^2\left(z^2+1\right)\le7\left(x^2+1\right)\left(y^2+1\right)\left(z^2+1\right)\)   \(\Leftrightarrow2\Sigma_{cyc}\left(x^4z^2+x^4+2x^2z^2+2x^2+z^2+1\right)\)\(\le7\left(x^2y^2z^2+x^2+y^2+z^2+x^2y^2+y^2z^2+z^2x^2+1\right)\)

\(\Leftrightarrow2\left(x^4+y^4+z^4\right)+2\left(x^4z^2+y^4x^2+z^4y^2\right)\)\(\le7x^2y^2z^2+3\left(x^2y^2+y^2z^2+z^2x^2\right)+x^2+y^2+z^2+1\)

\(\Leftrightarrow\left[x^2+y^2+z^2+x+y+z-2\left(x^4+y^4+z^4\right)\right]\)\(+7x^2y^2z^2+3\left(x^2y^2+y^2z^2+z^2x^2\right)-2\left(x^4z^2+y^4x^2+z^4y^2\right)\ge0\)

\(\Leftrightarrow\text{​​}\Sigma_{cyc}x^2\left(1-x^2\right)+\Sigma_{cyc}x\left(1-x^3\right)+7x^2y^2z^2\)\(+\left(x^2z^2+y^2x^2+z^2y^2\right)+2\Sigma x^2z^2\left(1-x^2\right)\ge0\)

(Đúng do \(x,y,z\in\left[0;1\right]\))

Đẳng thức xảy ra khi \(\left(x,y,z\right)=\left(1;0;0\right)\)và các hoán vị

9 tháng 6 2018

Sử dụng BĐT AM-GM, ta có: 

\(x^3+y^2\ge2yx\sqrt{x}\)

\(\Rightarrow\frac{2\sqrt{x}}{x^3+y^2}\le\frac{2\sqrt{x}}{2yx\sqrt{x}}=\frac{1}{xy}\)

Tương tự cộng lại suy ra: 

\(VT\le\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

17 tháng 5 2017

Bất đẳng thứ côsi hả bạn

17 tháng 5 2017

Mình sửa lại đề nhé:

\(\frac{x}{x^2+1}+\frac{y}{y^2+1}+\frac{z}{z^2+1}\le\frac{3}{2}\le\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\)

Dễ dàng chứng minh được: \(x^2+1\ge2x\Leftrightarrow\frac{x}{x^2+1}\le\frac{x}{2x}=\frac{1}{2}\)

Tương tự, ta cũng có: \(\frac{y}{y^2+1}\le\frac{1}{2};\frac{z}{z^2+1}\le\frac{1}{2}\)

Cộng từng vế của 3 BĐT trên ta được ĐPCM.

Ta chứng minh BĐT: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Leftrightarrow3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\ge9\)

\(\Leftrightarrow\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge6\)

BĐT này đúng với \(\frac{a}{b}+\frac{b}{a}\ge2\)

Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\), ta được:

\(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{9}{3+x+y+z}\ge\frac{9}{3+3}\ge\frac{3}{2}\)

7 tháng 6 2021

\(\dfrac{x-y}{z^2+1}=\dfrac{x-y}{z^2+xy+yz+zx}=\dfrac{x-y}{z\left(z+y\right)+x\left(z+y\right)}=\dfrac{x-y}{\left(x+z\right)\left(z+y\right)}\)

Tương tự: \(\dfrac{y-z}{x^2+1}=\dfrac{y-z}{\left(x+y\right)\left(x+z\right)}\);\(\dfrac{z-x}{y^2+1}=\dfrac{z-x}{\left(x+y\right)\left(y+z\right)}\)

Cộng vế với vế \(\Rightarrow VT=\dfrac{x-y}{\left(x+z\right)\left(y+z\right)}+\dfrac{y-z}{\left(x+y\right)\left(x+z\right)}+\dfrac{z-x}{\left(x+y\right)\left(y+z\right)}\)

\(=\dfrac{\left(x-y\right)\left(x+y\right)+\left(y-z\right)\left(y+z\right)+\left(z-x\right)\left(z+x\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(=\dfrac{x^2-y^2+y^2-z^2+z^2-x^2}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=0\)(đpcm)

24 tháng 3 2020

Theo bài ra ta có: \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\Rightarrow x+y+z=xyz\)

Do:\(\sqrt{yz\left(1+x^2\right)}=\sqrt{yz+x^2yz}=\sqrt{yz+x\left(x+y+z\right)}=\sqrt{\left(x+y\right)\left(x+z\right)}\)

Tương tự: \(\sqrt{xy\left(1+z^2\right)}=\sqrt{\left(z+y\right)\left(x+z\right)}\);

\(\sqrt{zx\left(1+y^2\right)}=\sqrt{\left(z+y\right)\left(x+y\right)}\)

\(A=\sqrt{\frac{x^2}{yz\left(1+x^2\right)}}+\sqrt{\frac{y^2}{zx\left(1+y^2\right)}}+\sqrt{\frac{z^2}{xy\left(1+z^2\right)}}\)

\(A=\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}+\sqrt{\frac{y}{x+y}.\frac{y}{y+z}}+\sqrt{\frac{z}{x+z}.\frac{z}{y+z}}\)

Áp dụng bất đẳng thức Cô si \(\frac{a+b}{2}\ge\sqrt{ab}\), dấu "=" xảy ra khi \(a=b\)

Ta có \(\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\);

\(\sqrt{\frac{y}{x+y}.\frac{y}{y+z}}\le\frac{1}{2}\left(\frac{y}{x+y}+\frac{y}{y+z}\right)\);

\(\sqrt{\frac{z}{x+z}.\frac{z}{y+z}}\le\frac{1}{2}\left(\frac{z}{x+z}+\frac{z}{y+z}\right)\)

\(A\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+z}+\frac{y}{y+x}+\frac{z}{y+z}+\frac{z}{x+z}\right)=\frac{3}{2}\)

Vậy \(A\le\frac{3}{2}\). Dấu "=" xảy ra khi \(x=y=z=\sqrt{3}\)

24 tháng 3 2020

M giải thích cho t chỗ sao mà \(\sqrt{xy\left(1+z^2\right)}=\sqrt{\left(z+y\right)\left(x+z\right)}\) đc vậy?

Với cả từ dòng này xuống dòng này nữa.

Violympic toán 8

Sao mà tin đc dấu " = " xảy ra khi nào vậy?

Violympic toán 8

11 tháng 5 2017

\(\frac{x}{1+y^2}+\frac{y}{1+z^2}+\frac{z}{1+x^2}\ge\frac{3}{2}\)

\(\Rightarrow\left(x+y+z\right)\left(\frac{x}{1+y^2}+\frac{y}{1+z^2}+\frac{z}{1+x^2}\right)\ge\frac{3}{2}\)

\(\Rightarrow\)\(\frac{x+y+z}{2}\ge\frac{3}{2}\)

Dấu ''='' chỉ xảy ra khi x=y=z=1

Để mình nghiên cứu giải cách khác

11 tháng 5 2017

Mình giải áp dụng theo BĐT Nesbit (3 phần tử giống với đề bài )

Mình chứng minh theo Nesbit :

\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)=\frac{a+b+c}{2}\)

\(\Rightarrow\frac{a+b+c}{2}\ge\frac{3}{2}\)

\(\Rightarrow2\left(a+b+c\right)\ge6\)