K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2017

Áp dụng bđt Cauchy - Schwarz ta có :

\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}=\frac{\left(x+y\right)^2-4+4}{x+y-2}=\frac{\left(x+y-2\right)\left(x+y+2\right)+4}{x+y-2}\)

\(x+y+2+\frac{4}{x+y-2}=\left(x+y-2\right)+\frac{4}{x+y-2}+4\)

\(\ge2\sqrt{\left(x+y-2\right).\frac{4}{\left(x+y-2\right)}}+4=2.2+4=8\) (AM - GM)

Dấu "=" xảy ra \(\Leftrightarrow x=y=2\)

30 tháng 8 2018

đk: x;y;z dương nhé

áp dụng bđt cosi ta có:

\(x^2+yz>=2\sqrt{x^2yz}=2x\sqrt{yz};y^2+xz>=2\sqrt{y^2xz}=2y\sqrt{xz};z^2+xy=2\sqrt{z^2xy}=2z\sqrt{xy}\)

\(\Rightarrow\frac{1}{x^2+yz}< =\frac{1}{2x\sqrt{yz}};\frac{1}{y^2+xz}< =\frac{1}{2y\sqrt{xz}};\frac{1}{z^2+xy}< =\frac{1}{2z\sqrt{xy}}\)

\(\Rightarrow\frac{1}{x^2+yz}+\frac{1}{y^2+xz}+\frac{1}{z^2+xy}< =\frac{1}{2x\sqrt{yz}}+\frac{1}{2y\sqrt{xz}}+\frac{1}{2z\sqrt{xy}}=\frac{1}{2}\left(\frac{1}{x\sqrt{yz}}+\frac{1}{y\sqrt{xz}}+\frac{1}{z\sqrt{xy}}\right)\left(1\right)\)

áp dụng bđt cosi ta có:

\(\frac{1}{xy}+\frac{1}{xz}>=2\cdot\sqrt{\frac{1}{xy}\cdot\frac{1}{xz}}=\frac{2}{x\sqrt{yz}};\frac{1}{xy}+\frac{1}{yz}>=2\cdot\sqrt{\frac{1}{xy}\cdot\frac{1}{yz}}=\frac{2}{y\sqrt{xz}};\)

\(\frac{1}{yz}+\frac{1}{xz}>=2\cdot\sqrt{\frac{1}{yz}\cdot\frac{1}{xz}}=\frac{2}{z\sqrt{xy}}\)

\(\Rightarrow\frac{1}{xy}+\frac{1}{xz}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{yz}+\frac{1}{xz}=\frac{2}{xy}+\frac{2}{yz}+\frac{2}{xz}>=\frac{2}{x\sqrt{yz}}+\frac{2}{y\sqrt{xz}}+\frac{2}{z\sqrt{xy}}\)

\(\Rightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}>=\frac{1}{x\sqrt{yz}}+\frac{1}{y\sqrt{xz}}+\frac{1}{z\sqrt{xy}}\)

\(\Rightarrow\frac{1}{2}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)>=\frac{1}{2}\left(\frac{1}{x\sqrt{yz}}+\frac{1}{y\sqrt{xz}}+\frac{1}{z\sqrt{xy}}\right)\left(2\right)\)

từ \(\left(1\right);\left(2\right)\Rightarrow\frac{1}{x^2+yz}+\frac{1}{y^2+xz}+\frac{1}{z^2+xy}>=\frac{1}{2}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)\left(đpcm\right)\)

dấu = xảy ra khi x=y=z

30 tháng 8 2018

nhầm từ \(\left(1\right);\left(2\right)\Rightarrow\frac{1}{x^2+yz}+\frac{1}{y^2+xz}+\frac{1}{z^2+xy}< =\frac{1}{2}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)\)

30 tháng 10 2017

Đặt \(\frac{1}{2x-y}\)= a, \(\frac{1}{x +y}\)= b, ta có \(\hept{\begin{cases}3a-6b=1\\a-b=0\end{cases}}\)

Giải hệ phương trình được a=\(\frac{-1}{3}\), b=\(\frac{-1}{3}\)
 

NV
2 tháng 11 2020

Đặt vế trái là P

Ta có: \(P\ge\frac{x^2+1}{1+\frac{y^2+1}{2}+z^2}+\frac{y^2+1}{1+\frac{z^2+1}{2}+x^2}+\frac{z^2+1}{1+\frac{x^2+1}{2}+y^2}\)

Đặt \(\left(x^2+1;y^2+1;z^2+1\right)=\left(a;b;c\right)\Rightarrow a;b;c\ge1\)

\(P\ge\frac{2a}{b+2c}+\frac{2b}{c+2a}+\frac{2c}{a+2b}=2\left(\frac{a^2}{ab+2ac}+\frac{b^2}{bc+2ab}+\frac{c^2}{ca+2bc}\right)\)

\(P\ge\frac{2\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\ge\frac{6\left(ab+bc+ca\right)}{3\left(ab+bc+ca\right)}=2\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\)

8 tháng 8 2016

+\(x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}=3\)

+\(3+2\left(xy+yz+zx\right)=x^2+y^2+z^2+2\left(xy+yz+zx\right)=\left(x+y+z\right)^2\le9\)

\(\Rightarrow B=\frac{1}{1+\sqrt{3+2\left(xy+yz+zx\right)}}\ge\frac{1}{1+3}=\frac{1}{4}\)

+\(A=\frac{x^2}{y+2z}+\frac{y^2}{z+2x}+\frac{z^2}{x+2y}=\frac{x^4}{x^2y+2zx^2}+\frac{y^4}{y^2z+2xy^2}+\frac{z^4}{z^2x+2yz^2}\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2y+y^2z+z^2x+2\left(xy^2+yz^2+zx^2\right)}\)

Áp dụng bđt Bunhiacopxki

\(x^2y+y^2z+z^2x=x.xy+y.yz+z.zx\le\sqrt{x^2+y^2+z^2}.\sqrt{x^2y^2+y^2z^2+z^2x^2}\)

\(\le\sqrt{x^2+y^2+z^2}.\sqrt{\frac{\left(x^2+y^2+z^2\right)^2}{3}}=3\)

(áp dụng \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\))

Tương tự: \(xy^2+yz^2+zx^2\le3\)

\(\Rightarrow B\ge\frac{3^2}{3+2.3}=1\)

\(VT=A+B\ge1+\frac{1}{4}=\frac{5}{4}=VP\)

8 tháng 8 2016

dvdfhfeye5

3 tháng 5 2020

Từ gt => \(\hept{\begin{cases}\left(\frac{1}{\sqrt{2}}-x\right)\left(\frac{1}{\sqrt{2}}-y\right)\ge0\Leftrightarrow\sqrt{x}+\sqrt{y}\le\frac{\sqrt{2}}{2}+\sqrt{2}\sqrt{xy}\left(1\right)\\x\sqrt{x}\le x\cdot\frac{1}{\sqrt{2}};y\sqrt{y}\le y\cdot\frac{1}{\sqrt{2}}\Rightarrow x\sqrt{x}+y\sqrt{y}\le\frac{1}{\sqrt{2}}\left(x+y\right)\left(2\right)\end{cases}}\)

Lại có \(\hept{\begin{cases}\sqrt{xy}\le xy+\frac{1}{4}\\\sqrt{xy}\le\frac{x+y}{2}\end{cases}\Rightarrow\hept{\begin{cases}\frac{2\sqrt{2}}{3}\sqrt{xy}\le\frac{2\sqrt{2}}{3}\left(xy+\frac{1}{4}\right)\left(3\right)\\\frac{\sqrt{2}}{3}\sqrt{xy}\le\frac{\sqrt{2}}{6}\left(x+y\right)\left(4\right)\end{cases}}}\)

Từ (1)(2)(3) và (4) ta có:

\(x\sqrt{x}+y\sqrt{y}+\sqrt{x}+\sqrt{y}\le\frac{\sqrt{2}}{2}\left(x+y\right)+\frac{\sqrt{2}}{2}+\frac{2\sqrt{2}}{3}\left(xy+\frac{1}{4}\right)+\frac{\sqrt{2}}{6}\left(x+y\right)\)

\(\le\frac{2\sqrt{2}}{3}\left(1+x+y+xy\right)\)

=> \(VT=\frac{\sqrt{x}}{1+y}+\frac{\sqrt{y}}{1+x}=\frac{x\sqrt{x}+y\sqrt{y}+\sqrt{x}+\sqrt{y}}{1+x+y+xy}\le\frac{2\sqrt{2}}{3}\)

Dấu "=" xảy ra <=> \(x=y=\frac{1}{2}\)