K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC vuông tại A có \(BC^2=AB^2+AC^2\)

=>\(BC^2=4^2+7,5^2=72,25\)

=>\(BC=\sqrt{72,25}=8,5\)

Xét ΔABC vuông tại A có \(cotB=\dfrac{BA}{AC}\)

=>\(cotB=\dfrac{4}{7,5}=\dfrac{8}{15}\)

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

Xét ΔABH vuông tại H có \(cotB=\dfrac{BH}{AH}\)

=>\(\dfrac{BH}{AH}=\dfrac{8}{15}\)

=>\(BH=\dfrac{8}{15}\cdot AH\)

\(AB^2=BH\cdot BC=\dfrac{8}{15}\cdot AH\cdot BC\)

28 tháng 12 2020

Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được: 

\(AC^2=BH^2+CH^2\)

\(\Leftrightarrow AC^2=5^2+12^2=169\)

hay AC=13(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được: 

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow HB=\dfrac{AH^2}{HC}=\dfrac{12^2}{5}=28.8\left(cm\right)\)

Ta có: BC=HB+HC(H nằm giữa B và C)

nên BC=28,8+5=33,8(cm)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được: 

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AB^2=BC^2-AC^2=33.8^2-13^2=973.44\)

hay \(AB=31.2cm\)

Vậy: AC=13cm; AB=31,2cm; BC=33,8cm; BH=28,8cm

28 tháng 12 2020

Áp dụng định lí Pytago vào ΔBAH vuông tại H, ta được: 

\(AH^2+HB^2=AB^2\)

\(\Leftrightarrow HB^2=AB^2-AH^2=30^2-24^2=324\)

hay HB=18(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được: 

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC=\dfrac{AH^2}{HB}=\dfrac{24^2}{18}=32\left(cm\right)\)

Ta có: BC=HB+HC(H nằm giữa B và C)

nên BC=18+32=50(cm)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\LeftrightarrowÁC^2=BC^2-AB^2=50^2-30^2=1600\)

hay AC=40cm

Vậy: AC=40cm; CH=32cm; BC=50cm; BH=18cm

Bài 1: 

a: BC=30cm

AH=14,4(cm)

BH=10,8(cm)

bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!

13 tháng 2 2016

rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ

Giải giùm mình nhanh ạ , cần gấp , có thể ko cần vẽ hình cũng đc Bài 1: Cho ABC có AB = 5cm; AC = 12cm; BC = 13cmChứng minh ABC vuông tại A và tính độ dài đường cao AH;Kẻ HEAB tại E, HF AC tại F. Chứng minh: AE.AB = AF.AC;Chứng minh: AEF và ABC đồng dạng.Bài 2: Cho (ABC vuông tại A, đường cao AH. Biết HB = 3,6cm ; HC = 6,4cmTính độ dài các đoạn thẳng: AB, AC, AH.Kẻ HEAB ; HFAC. Chứng minh rằng: AB.AE =...
Đọc tiếp

Giải giùm mình nhanh ạ , cần gấp , có thể ko cần vẽ hình cũng đc 

Bài 1: Cho ABC có AB = 5cm; AC = 12cm; BC = 13cm
Chứng minh ABC vuông tại A và tính độ dài đường cao AH;
Kẻ HEAB tại E, HF AC tại F. Chứng minh: AE.AB = AF.AC;
Chứng minh: AEF và ABC đồng dạng.
Bài 2: Cho (ABC vuông tại A, đường cao AH. Biết HB = 3,6cm ; HC = 6,4cm
Tính độ dài các đoạn thẳng: AB, AC, AH.
Kẻ HEAB ; HFAC. Chứng minh rằng: AB.AE = AC.AF.
Bài 3: Cho hình chữ nhật ABCD. Từ D hạ đường vuông góc với AC, cắt AC ở H. Biết rằng AB = 13cm; DH = 5cm. Tính độ dài BD.
Bài 4: Cho ABC vuông ở A có AB = 3cm, AC = 4cm, đường cao AH.
Tính BC, AH. b) Tính góc B, góc C.
Phân giác của góc A cắt BC tại E. Tính BE, CE.
Bài 5 Cho tam giác ABC vuông tại A, đường cao AH. Biết AH = 4, BH = 3. Tính tanB và số đo góc C (làm tròn đến phút ).
Bài 6: Cho tam giác ABC vuông tại A có B = 300, AB = 6cm
a) Giải tam giác vuông ABC.
b) Vẽ đường cao AH và trung tuyến AM của ABC. Tính diện tích AHM.
Bài 7: Cho tam giác ABC vuông tại A, đường cao AH = 6cm, HC = 8cm.
a/ Tính độ dài HB, BC, AB, AC
b/ Kẻ . Tính độ dài HD và diện tích tam giác AHD.
Bài 8: Cho tam giác ABC vuông tại A có AB = 10cm, 
a) Tính độ dài BC?
b) Kẻ tia phân giác BD của góc ABC (D AC). Tính AD?
(Kết quả về cạnh làm tròn đến chữ số thập phân thứ hai)
Bài 9: Trong tam giác ABC có AB = 12cm, B = 400, C = 300, đường cao AH. 
Hãy tính độ dài AH, HC?
Bài 10: Cho tam giác ABC vuông ở A ; AB = 3cm ; AC = 4cm.
a) Giải tam giác vuông ABC?
b) Phân giác của góc A cắt BC tại E. Tính BE, CE.
c) Từ E kẻ EM và EN lần lượt vuông góc với AB và AC. Hỏi tứ giác AMEN là hình gì ? Tính diện tích của tứ giác AMEN

1
9 tháng 5 2021

mình chịu thoiii

21 tháng 10 2021

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

c: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot4.5}{2}=3\cdot4.5=13.5\left(cm^2\right)\)

13 tháng 12 2020

                                   Giải

a.   Xét \(\Delta ABC\) ta có :

      \(AB^2+AC^2=\) \(6^2+4,5^2=56,25\) (cm)

       \(BC^2=7,5^2=56,25\) (cm)

  \(\Rightarrow\) \(\Delta ABC\) là tam giác vuông

b.   - Áp dụng hệ thức về một số cạnh và đường cao trong tam giác vuông ta có :

          AB.AC = BC.AH

     \(\Leftrightarrow6.4,5=7,5.AH\)

     \(\Leftrightarrow AH=\dfrac{6.4,5}{7,5}\)

     \(\Leftrightarrow AH=3.6\) (cm)

   - Trong \(\Delta ABH\perp H\) ta có :

      sin B = \(\dfrac{AH}{AB}=\dfrac{3,6}{6}=0,6\)

      \(\Rightarrow\) Góc B \(\approx\) \(37\) độ

      \(\Rightarrow\) Góc C = 53 độ

   Vậy AH = 3,6cm, góc B = 37 độ, góc C = 53 độ

 

6 tháng 7 2023

1

\(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{.4}AC\)

Theo pytago xét tam giác ABC vuông tại A có:

\(\sqrt{AB^2+AC^2}=BC^2\\ \Rightarrow\sqrt{\left(\dfrac{3}{4}AC\right)^2+AC^2}=10\\ \Rightarrow AC=8\\ \Rightarrow AB=\dfrac{3.8}{4}=6\)

Theo hệ thức lượng xét tam giác ABC vuông tại A, đường cao AH có:

\(AB^2=BH.BC\\ \Leftrightarrow BH=\dfrac{AH^2}{BC}=\dfrac{6^2}{10}=3,6\)

2

\(\dfrac{AB}{AC}=\dfrac{27}{4}\Rightarrow AB=\dfrac{27}{4}AC\)

\(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\dfrac{27}{4}AC\right)^2+AC^2}=\dfrac{\sqrt{745}AC}{4}\) ( Theo pytago trong tam giác ABC vuông tại A)

Theo hệ thức lượng trong tam giác ABC vuông tại A, đường cao AH có:

\(AH.BC=AB.AC\\ \Leftrightarrow33,6.\dfrac{\sqrt{745}}{4}AC=\dfrac{27}{4}AC.AC\\ \Rightarrow AC=\dfrac{56\sqrt{745}}{45}\)

\(\Rightarrow\left\{{}\begin{matrix}AB=\dfrac{27}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{42\sqrt{745}}{5}\\BC=\dfrac{\sqrt{745}}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{2086}{9}\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}AC\approx33,97\\AB\approx229,28\\BC\approx231,78\end{matrix}\right.\)

3

`BC=HB+HC=36+64=100`

Theo hệ thức lượng có (trong tam giác ABC vuông tại A đường cao AH):

\(AH^2=HB.HC\\ \Rightarrow AH=\sqrt{36.64}=48\)

\(AB=\sqrt{HB.BC}=\sqrt{36.100}=60\\ AC=\sqrt{HC.BC}=\sqrt{64.100}=80\)

16 tháng 12 2023

a: Xét ΔABH vuông tại H có \(AB^2=AH^2+HB^2\)

=>\(HB^2=6^2-4,8^2=12.96\)

=>\(HB=\sqrt{12,96}=3,6\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(BA^2=BH\cdot BC\)

=>\(BC=\dfrac{6^2}{3,6}=10\left(cm\right)\)

Xét ΔABC vuông tại A có \(AB^2+AC^2=BC^2\)

=>\(AC^2+6^2=10^2\)

=>\(AC^2=100-36=64\)

=>\(AC=\sqrt{64}=8\left(cm\right)\)

Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\)

nên \(\widehat{B}\simeq53^0\)

b: Xét ΔHAD có \(\widehat{AHD}=90^0\); HA=HD

nên ΔAHD vuông cân tại H

Xét tứ giác IDBA có \(\widehat{IDB}+\widehat{IAB}=90^0+90^0=180^0\)

nên IDBA là tứ giác nội tiếp

=>\(\widehat{AIB}=\widehat{ADB}=45^0\)

Xét ΔAIB có \(\widehat{BAI}=90^0;\widehat{AIB}=45^0\)

nên ΔAIB vuông cân tại A

=>AI=AB