K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2019

A B C Q P I H K D L M N G J S T R E O

+) Gọi M,N lần lượt là hình chiếu của P lên AB,AC, L là hình chiếu của I trên MN. Kẻ BG và CJ cùng vuông góc MN.

Nhận xét: Trong \(\Delta\)ABC có đường phân giác trong AE, P và Q trên AE với ^ACQ = ^BCP (gt)

Ta sẽ chứng minh được ^ABP = ^CBQ dựa vào 1 bài toán nổi tiếng ở lớp 7 (Có trong sách NC & PT Toán 7, tập 2)

Tính chất trên là 1 trường hợp đặc biệt của "Đẳng giác". Các bạn có thể tự chứng minh hoặc đọc trong sách :)

Quay trở lại bài toán: Xét \(\Delta\)BMP và \(\Delta\)BIQ: ^PBM = ^QBI (cmt), ^BMP = ^BIQ (=900)

=> \(\Delta\)BMP ~ \(\Delta\)BIQ (g.g) => \(\frac{BI}{BM}=\frac{QI}{PM}\). Tương tự: \(\frac{CI}{CN}=\frac{QI}{PN}\)

Mà PM=PN nên \(\frac{BI}{BM}=\frac{CI}{CN}\)=> \(\frac{BI}{CI}=\frac{BM}{CN}\). Dễ thấy \(\Delta\)MAN cân tại A => ^AMN = ^ANM => ^BMG = ^CNJ

Suy ra: \(\Delta\)BGM ~ \(\Delta\)CJN (g.g) => \(\frac{BM}{CN}=\frac{MG}{NJ}\). Từ đó: \(\frac{BI}{CI}=\frac{MG}{NJ}\)

Để ý hình thang vuông BCJG, nhờ ĐL Thales ta lập được tỉ số: \(\frac{BI}{CI}=\frac{GL}{JL}=\frac{MG}{NJ}=\frac{ML}{NL}=\frac{BM}{CN}\)

+) Kéo dài tia BH,CH cắt MN tại S,T. Có ngay \(\Delta\)THS ~ \(\Delta\)MPN (g.g) (Các cặp cạnh song song)

Ta thấy: L thuộc 2 cạnh MN,ST tương ứng, \(\frac{LM}{LS}=\frac{LN}{LT}\)(Vì \(\Delta\)BLS ~ \(\Delta\)CLT) => \(\Delta\)HLT ~ \(\Delta\)PLN (c.g.c)

=> ^HLT = ^PLN => 900 - ^HLT = 900 - ^PLN => ^HLI = ^PLI  => LI là phân giác ^HLP (1)

+) Gọi R là giao điểm thứ hai của DP với đường tròn (O) => ^PRA= 900 => 5 điểm A,R,N,P,M cùng thuộc 1 đường tròn

=> Tứ giác ARMN nội tiếp => ^MRN = ^BAC = ^BRC, ^RNM = ^RAM = ^RCB nên \(\Delta\)RMN ~ \(\Delta\)RBC (g.g)

Kéo theo \(\Delta\)RMB ~ \(\Delta\)RNC (c.g.c) => \(\frac{BM}{CN}=\frac{RM}{RN}\). Mà \(\frac{BM}{CN}=\frac{LM}{LN}\)(cmt) nên \(\frac{RM}{RN}=\frac{LM}{LN}\)

=> RL là phân giác ^MRN. Chú ý tứ giác RMPN nội tiếp có ^PMN = ^PNM => RP là phân giác ^MRN

Dẫn đến RL trùng với RP hay R,L,P thẳng hàng. Lại có: R,P,K thẳng hàng nên L,P,K thẳng hàng (2)

+) Từ (1) và (2) suy ra: LI là phân giác ^HLK. Mà KH vuông góc LI (Quan hệ song song vuông góc)

Nên \(\Delta\)HKL cân tại L hay H và K đối xứng nhau qua IL. Từ đó: IH = IK => \(\Delta\)HIK cân tại I (đpcm).

25 tháng 1 2022

Xét tứ giác AFHE có:

Góc HEA + Góc HFA = 90 độ + 90 độ = 180 độ.

Mà 2 góc này ở vị trí đối nhau.

=> Tứ giác AFHE nội tiếp đường tròn (dhnb).

 

9 tháng 4 2020

*Bài này có nhiều cách làm, mỗi cách có 1 mình khác nhau. OLM đang lỗi nên không vẽ được hình. Bạn thông cảm*

  • Giả sử E nằm giữa A và F
  • Cách 1: Kéo dài BE cắt đường tròn ngoại tiếp \(\Delta\)AEC tại I

Ta có: \(\widehat{EIC}=\widehat{EAC}\) nên \(\Delta\)ABF~\(\Delta\)IBC

\(\Rightarrow\frac{BF}{BA}=\frac{BC}{BI}\) hay \(\frac{BF}{BC}=\frac{BA}{BI}\)

Lại có \(\widehat{ABE}=\widehat{CBF}\) nên \(\Delta\)ABI~\(\Delta\)FBC

Vậy \(\widehat{ACE}=\widehat{EIA}=\widehat{ACE}\)

  • Cách 2: Gọi I, H lần lượt là điểm đối xứng của E qua AB và AC. K là điểm đối xứng F qua BC

Ta có \(\Delta AIH\) cân, AD là đường phân giác nên AD là đường trung trực đoạn IH

=> FI=FH (1)

\(\Delta FBI=\Delta KBE\left(cgc\right)\) nên FI=KE(2)

Từ (1) (2) => KE=FH

\(\Delta CEK=\Delta CHF\left(ccc\right)\)

=> \(\widehat{HCF}=\widehat{ECK}\) hay \(\widehat{ACE}=\widehat{BCF}\)

  • Cách 3: Đặt \(\widehat{ABE}=\widehat{CBF}=\alpha;\widehat{ACE}=\beta;\widehat{BCF}=\gamma\)

Ta có: \(\frac{S_{ACE}}{S_{DCF}}=\frac{\frac{1}{2}\cdot AC\cdot CE\cdot\sin\beta}{\frac{1}{2}\cdot DC\cdot CF\cdot\sin\gamma}\left(3\right)\)

Mà \(\frac{S_{ACE}}{S_{DCF}}=\frac{S_{ABE}}{S_{DBF}}=\frac{\frac{1}{2}AB\cdot BE\cdot\sin\alpha}{\frac{1}{2}BD\cdot BF\cdot\sin\alpha}\left(4\right)\)

Từ (3) (4) => \(\frac{AC}{CD}\cdot\frac{CE}{CF}=\frac{\sin\beta}{\sin\gamma}=\frac{AB}{BD}\cdot\frac{BE}{BF}\)

Mặt khác \(\frac{AC}{CD}=\frac{AB}{BD};\frac{CE}{CF}=\frac{BE}{BF}\left(E;F\in AD\right)\)

Vậy \(\frac{\sin\beta}{\sin\gamma}=1\Rightarrow\widehat{ACE}=\widehat{BCF}\left(\beta+\gamma=180^o\right)\)

  • Trường hợp F nằm giữa A và E, có \(\widehat{ABF}=\widehat{CBE}\), cũng làm tương tự