K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2020

Ta có : \(\left(a+b+c\right)^2=a^2+b^2+c^2< =>ab+bc+ca=0< =>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

Đặt \(\left\{\frac{1}{a};\frac{1}{b};\frac{1}{c}\right\}\rightarrow\left\{x;y;z\right\}\)bài toán trở thành  : Cho \(x+y+z=0\)Tính \(P=\frac{1}{xyz}\left(x^3+y^3+z^3\right)\)

Theo giả thiết  \(x+y+z=0< =>x^3+y^3+z^3=3xyz\)

Suy ra \(P=\frac{1}{xyz}.\left(x^3+y^3+z^3\right)=\frac{3xyz}{xyz}=3\)

Vậy P = 3 

22 tháng 10 2020

\(\left(a+b+c\right)^2=a^2+b^2+c^2\Leftrightarrow2ab+2bc+2ca=0\Leftrightarrow ab+bc+ca=0\)

\(\Rightarrow P=\frac{-ab-ac}{a^2}+\frac{-bc-ab}{b^2}+\frac{-ca-cb}{c^2}=\frac{-b-c}{a}+\frac{-a-c}{b}+\frac{-a-b}{c}\)

AH
Akai Haruma
Giáo viên
4 tháng 7 2019

Lời giải:
\(\frac{1}{(b-c)(a^2+ac-b^2-bc)}+\frac{1}{(c-a)(b^2+ab-c^2-ac)}+\frac{1}{(a-b)(c^2+bc-a^2-ab)}\)

\(=\frac{1}{(b-c)[(a^2-b^2)+(ac-bc)]}+\frac{1}{(c-a)[(b^2-c^2)+(ab-ac)]}+\frac{1}{(a-b)[(c^2-a^2)+(bc-ab)]}\)

\(=\frac{1}{(b-c)(a-b)(a+b+c)}+\frac{1}{(c-a)(b-c)(b+c+a)}+\frac{1}{(a-b)(c-a)(c+a+b)}\)

\(=\frac{c-a}{(b-c)(a-b)(c-a)(a+b+c)}+\frac{a-b}{(a-b)(c-a)(b-c)(a+b+c)}+\frac{b-c}{(a-b)(c-a)(b-c)(a+b+c)}\)

\(=\frac{c-a+a-b+b-c}{(a-b)(b-c)(c-a)(a+b+c)}=0\)

25 tháng 9 2019

Ta có: \(P=\Sigma\frac{\left(\frac{1}{c^2}\right)}{\left(\frac{1}{a}+\frac{1}{b}\right)}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}=\frac{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}{2}\ge\frac{\left(\frac{9}{a+b+c}\right)}{2}=\frac{3}{2}\)

Đẳng thức xảy ra khi a =b =c = 1.

True?

18 tháng 4 2020

Ta có : 

\(P=\frac{ab}{c^2\left(a+b\right)}+\frac{ac}{b^2\left(a+c\right)}+\frac{bc}{a^2\left(b+c\right)}\)

\(\Rightarrow P=\frac{\left(\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}}+\frac{\left(\frac{1}{b}\right)^2}{\frac{1}{c}+\frac{1}{a}}+\frac{\left(\frac{1}{a}\right)^2}{\frac{1}{c}+\frac{1}{b}}\)

\(\Rightarrow P\ge\frac{\left(\frac{1}{c}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{c}+\frac{1}{b}}\)

\(\Rightarrow P\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}\)

\(\Rightarrow P\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow P\ge\frac{1}{2}.\frac{9}{a+b+c}\)

\(\Rightarrow P\ge\frac{3}{2}\)

Dấu = xảy ra khi  a=b=c=1 

1 tháng 8 2018

mai làm nhé nếu quên thì nhớ nhắc 

2 tháng 8 2018

lam di ban

17 tháng 6 2019

đề bài

cm 

1/a+2 + 1/b+2 +1/c+2 <=1

bn p viết đề chứ???

##thiêndi###

21 tháng 4 2017

(Lời giải của thằng bạn)

\(\frac{bc}{a^2\left(b+c\right)}=\frac{\left(\frac{1}{a}\right)^2}{\frac{1}{b}+\frac{1}{c}}\). Tương tự ta có \(P=\frac{\left(\frac{1}{a}\right)^2}{\frac{1}{b}+\frac{1}{c}}+\frac{\left(\frac{1}{b}\right)^2}{\frac{1}{c}+\frac{1}{a}}+\frac{\left(\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}\)

Mà \(\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{1}{2}.\frac{9}{a+b+c}=\frac{3}{2}\)

Nên \(minP=\frac{3}{2}\) và đẳng thức xảy ra tại \(a=b=c=1\)

10 tháng 5 2020

Sửa đề số hạng cuối \(\frac{bc}{b^2\left(a+c\right)}\)

Đặt \(x=\frac{1}{a};y=\frac{1}{b};z=\frac{1}{c}\)thì x,y,z>0 và xyz=1. Khi đó:

\(P=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\)

(BĐT Cauchy cho 3 số dương, kết hợp với giả thết xyz=1)

Dấu "=" xảy ra <=> x=y=z=1 tức là a=b=c=1

cho đề này:

cho a;b;c là các số thực dương thỏa mãn a2+b2+c2=1.CMR:\(\frac{1}{1-ab}+\frac{1}{1-bc}+\frac{1}{1-ca}\le\frac{9}{2}\)