K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2020

\(P=\frac{1}{x\left(x+1\right)}+\frac{1}{y\left(y+1\right)}+\frac{1}{z\left(z+1\right)}\)

\(\ge3\sqrt[3]{\frac{1}{xyz\left(x+1\right)\left(y+1\right)\left(z+1\right)}}\)

Mà theo BĐT AM - GM ta có tiếp:

\(xyz\le\left(\frac{x+y+z}{3}\right)^3=1\)

\(\left(x+1\right)\left(y+1\right)\left(z+1\right)\le\left(\frac{x+y+z+3}{3}\right)^3=8\)

\(\Rightarrow P\le\frac{3}{2}\)

Đẳng thức xảy ra tại x=y=z=1

Vậy..................

6 tháng 7 2018

Do \(x;y;z>0\) và \(x^2+y^2+z^2=3\)

Nên \(0< x;y;z< \sqrt{3}\)

Ta có: \(\frac{1}{x+y+z}\le\frac{1}{9x}+\frac{1}{9y}+\frac{1}{9z}\)

\(\Rightarrow A\ge x+\frac{1}{x}+y+\frac{1}{y}+z+\frac{1}{z}-\frac{1}{9x}-\frac{1}{9y}-\frac{1}{9z}\)

\(\Leftrightarrow A\ge x+\frac{8}{9x}+y+\frac{8}{9y}+z+\frac{8}{9z}\)

Ta chứng minh: \(x+\frac{8}{9x}\ge\frac{x^2+33}{18}\)

\(\Leftrightarrow\left(x-1\right)^2\left(16-x\right)\ge\)

Do đó \(A\ge\frac{x^2+y^2+z^2+99}{18}=\frac{102}{18}=\frac{17}{3}\)

Dấu = xảy ra khi x=y=z=1

6 tháng 7 2018

Dòng thứ 3 từ dưới lên là \(\left(x-1\right)^2\left(16-x\right)\ge0\)

                              Đúng do \(0< x< \sqrt{3}< 16\)

28 tháng 1 2021

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111+11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111-2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222=?

28 tháng 1 2021

8

555566655

5665656746565656+5965=?

26 tháng 4 2017

bn có cần gấp lắm k?

Nếu k gấp thì tối mai mik giải cho nhé

26 tháng 4 2017

Ai giải được giúp mình với , làm ơn đi

5 tháng 3 2020

cậu tự mà làm đi sao cứ bắt người khác làm hộ vậy

23 tháng 3 2017

Ta có:

\(\frac{1}{x^2+x}+\frac{x+1}{4x}\ge\frac{1}{x}\)

\(\Rightarrow\frac{1}{x^2+x}\ge\frac{3}{4x}-\frac{1}{4}\left(1\right)\)

Tương tự ta có:

\(\hept{\begin{cases}\frac{1}{y^2+y}\ge\frac{3}{4y}-\frac{1}{4}\left(2\right)\\\frac{1}{z^2+z}\ge\frac{3}{4z}-\frac{1}{4}\left(3\right)\end{cases}}\)

Cộng (1), (2), (3) vế theo vế ta được:

\(P=\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\ge\frac{3}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-\frac{3}{4}\)

\(\ge\frac{3}{4}.\frac{\left(1+1+1\right)^2}{x+y+z}-\frac{3}{4}=\frac{3}{2}\)

Vậy GTNN là  \(P=\frac{3}{2}\)đạt được khi \(x=y=z=1\)

23 tháng 3 2017

Áp dụng BĐT Cauchy-Schwarz ta có: 

\(\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2=9\)

\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge9\Rightarrow x^2+y^2+z^2\ge3\)

Lại áp dụng BĐT Cauchy-Schwarz dạng Engel ta có: 

\(P=\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\ge\frac{\left(1+1+1\right)^2}{x^2+x+y^2+y+z^2+z}\)

\(=\frac{\left(1+1+1\right)^2}{\left(x^2+y^2+z^2\right)+\left(x+y+z\right)}\ge\frac{\left(1+1+1\right)^2}{3+3}=\frac{9}{6}=\frac{3}{2}\)

Đẳng  thức xảy ra khi \(x=y=z=1\)

29 tháng 12 2016

...

=>\(\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)=1\)

=>\(\frac{x^2}{y+z}+\frac{xy}{y+z}+\frac{xz}{y+z}+\frac{xy}{z+x}+\frac{y^2}{z+x}+\frac{yz}{z+x}+\frac{xz}{x+y}+\frac{yz}{x+y}+\frac{z^2}{x+y}=1\)

=>\(\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+\left(\frac{xy}{y+z}+\frac{xz}{y+z}+\frac{xy}{z+x}+\frac{yz}{z+x}+\frac{xz}{x+y}+\frac{yz}{x+y}\right)=1\)

=>\(\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+\left(\frac{xy+xz}{y+z}+\frac{xy+yz}{z+x}+\frac{xz+yz}{x+y}\right)=1\)

=>\(\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+\left(x+y+z\right)=1\)

=>\(\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+1=1\)

=>\(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}=0\)

29 tháng 12 2016

Dáp số =0

HD