K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2017

Theo hệ quả của bất đẳng thức Cauchy 

\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)

\(\Rightarrow3\ge ab+bc+ac\)

\(\Rightarrow3+c^2\ge ab+bc+ac+c^2=\left(a+c\right)\left(b+c\right)\)

\(\Rightarrow\sqrt{3+c^2}\ge\sqrt{\left(a+c\right)\left(b+c\right)}\)

\(\Rightarrow\frac{ab}{\sqrt{c^2+3}}\le\frac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)

Thiết lập tương tự ta có \(\hept{\begin{cases}\frac{bc}{\sqrt{a^2+3}}\le\frac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}\\\frac{ac}{\sqrt{b^2+3}}\le\frac{ac}{\sqrt{\left(a+b\right)\left(b+c\right)}}\end{cases}}\)

\(\Rightarrow VT\le\frac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}+\frac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{ac}{\sqrt{\left(a+b\right)\left(b+c\right)}}\)

Áp dụng bất đẳng thức Cauchy 

\(\Rightarrow\frac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}=\sqrt{\frac{a^2b^2}{\left(a+c\right)\left(b+c\right)}}\le\frac{\frac{ab}{a+c}+\frac{ab}{b+c}}{2}\)

Tượng tự ta có \(\hept{\begin{cases}\frac{bc}{\sqrt{\left(a+c\right)\left(a+b\right)}}\le\frac{\frac{bc}{a+c}+\frac{bc}{a+b}}{2}\\\frac{ac}{\sqrt{\left(a+b\right)\left(b+c\right)}}\le\frac{\frac{ac}{a+b}+\frac{ac}{b+c}}{2}\end{cases}}\)

\(\Rightarrow VT\le\frac{\left(\frac{bc}{a+b}+\frac{ac}{a+b}\right)+\left(\frac{ac}{b+c}+\frac{ab}{b+c}\right)+\left(\frac{bc}{a+c}+\frac{ab}{a+c}\right)}{2}\)

\(\Rightarrow VT\le\frac{a+b+c}{2}=\frac{3}{2}\) ( đpcm ) 

Dấu " = " xảy ra khi \(a=b=c=1\)

30 tháng 5 2017

Ta có BĐT \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow\frac{1}{2}\left(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right)\ge0\)

\(\Rightarrow ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2=\frac{1}{3}\cdot9=3\)

Khi đó áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{ab}{\sqrt{c^2+3}}=\frac{ab}{\sqrt{c^2+ab+bc+ca}}=\frac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)

\(\le\frac{1}{2}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)\). Tương tự cũng có: 

\(\frac{bc}{\sqrt{a^2+3}}\le\frac{1}{2}\left(\frac{bc}{a+b}+\frac{bc}{a+c}\right);\frac{ca}{\sqrt{b^2+3}}\le\frac{1}{2}\left(\frac{ca}{a+b}+\frac{ca}{b+c}\right)\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\le\frac{1}{2}\left(\frac{bc+ca}{a+b}+\frac{bc+ab}{a+c}+\frac{ab+ca}{b+c}\right)=\frac{1}{2}\left(a+b+c\right)=\frac{3}{2}\)

Đẳng thức xảy ra khi \(a=b=c=1\)

8 tháng 2 2020

Cách 1:

BĐT \(\Leftrightarrow7\left(a+b+c\right)\left(ab+bc+ca\right)\le2\left(a+b+c\right)^3+9abc\)

\(VP-VT=\left(a+b\right)\left(a-b\right)^2+\left(b+c\right)\left(b-c\right)^2+\left(c+a\right)\left(c-a\right)^2\ge0\)

Ta có đpcm. Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)

Cách 2:

Đặt \(\left(a+b+c;ab+bc+ca;abc\right)=\left(3u;3v^2;w^3\right)\) thì 3u = 1. Chú ý \(\frac{\left(a+b+c\right)^2}{3}\ge\left(ab+bc+ca\right)\Rightarrow3u^2\ge3v^2\Rightarrow u^2\ge v^2\)

Cần chứng minh: \(21v^2\le2+9w^3\Leftrightarrow63uv^2\le54u^3+9w^3\)

\(RHS-LHS=9\left(w^3+3u^3-4uv^2\right)+27u\left(u^2-v^2\right)\ge0\)

Đúng theo BĐT Schur bậc 3.

P/s: Em không chắc ở cách 2.

4 tháng 7 2017

\(\frac{a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\)

\(=\frac{a}{\sqrt{\left(ab+bc+ca\right)+a^2}}+\frac{b}{\sqrt{\left(ab+bc+ca\right)+b^2}}+\frac{c}{\sqrt{\left(ab+bc+ca\right)+c^2}}\)

\(=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(b+c\right)\left(b+a\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

\(\le\frac{1}{2}.\left(\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{b+a}+\frac{b}{b+c}+\frac{c}{c+a}+\frac{c}{c+b}\right)=\frac{3}{2}\)

26 tháng 2 2016

toán lớp  thì ko biết

sao mình làm ra nó bằng 3/2 đc mà lại ko bé hơn nhỉ