K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2019

Bài 1:

a) Áp dụng BĐT Cô-si:

\(VT=a-1+\frac{1}{a-1}+1\ge2\sqrt{\frac{a-1}{a-1}}+1=2+1=3\)

Dấu "=" xảy ra \(\Leftrightarrow a=2\).

b) BĐT \(\Leftrightarrow a^2+2\ge2\sqrt{a^2+1}\)

\(\Leftrightarrow a^2+1-2\sqrt{a^2+1}+1\ge0\)

\(\Leftrightarrow\left(\sqrt{a^2+1}-1\right)^2\ge0\) ( LĐ )

Dấu "=" xảy ra \(\Leftrightarrow a=0\).

Bài 2: tương tự 1b.

2 tháng 9 2019

Bài 3:

Do \(a,b,c\) dương nên ta có các BĐT:

\(\frac{a}{a+b+c}< \frac{a}{a+b}< \frac{a+c}{a+b+c}\)

Tương tự: \(\frac{b}{a+b+c}< \frac{b}{b+c}< \frac{b+a}{a+b+c};\frac{c}{a+b+c}< \frac{c}{c+a}< \frac{c+b}{a+b+c}\)

Cộng theo vế 3 BĐT:

\(\frac{a+b+c}{a+b+c}< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{2\left(a+b+c\right)}{a+b+c}\)

\(\Leftrightarrow1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)( đpcm )

22 tháng 8 2020

Cái phần CMR:   \(\left(a-1\right)^2+\left(b-2\right)^2+\left(c-3\right)^2\le3\left(b-2\right)\)     phải là giả thiết chứ nhỉ ??

ĐỀ GỐC BÀI NÀY LÀ ĐỀ CỦA CHUYÊN HƯNG YÊN NHÉ, THẦY CẬU RA LẠI THÔI !!!!!

DO:   \(a\ge1;b\ge2;c\ge3\Rightarrow a-1;b-2;c-3\ge0\)

ĐẶT:   \(a-1=x;b-2=y;c-3=z\)

=>     \(gt\Leftrightarrow\hept{\begin{cases}x;y;z\ge0\\x^2+y^2+z^2\le3y\end{cases}}\)

=>   \(a=x+1;b=y+2;c=z+3\)

=>   \(P=\frac{1}{\left(x+1\right)^2}+\frac{4}{\left(y+2\right)^2}+\frac{8}{\left(z+3\right)^2}\)

TA ÁP DỤNG 2 BĐT SAU:   \(\hept{\begin{cases}\left(x+1\right)^2\le2\left(x^2+1\right)\\\left(z+3\right)^2\le4\left(z^2+3\right)\end{cases}}\)

=>   \(P\ge\frac{1}{2\left(x^2+1\right)}+\frac{8}{4\left(z^2+3\right)}+\frac{4}{\left(y+2\right)^2}\)

=>   \(P\ge\frac{1}{2\left(x^2+1\right)}+\frac{4}{2\left(z^2+3\right)}+\frac{4}{\left(y+2\right)^2}\)

=>   \(P\ge\frac{\left(1+2\right)^2}{2\left(x^2+z^2\right)+8}+\frac{4}{\left(y+2\right)^2}\)      (BĐT CAUCHY - SCHWARZ)

=>   \(P\ge\frac{9}{2\left(x^2+z^2\right)+8}+\frac{4}{\left(y+2\right)^2}\)

MÀ:   \(x^2+z^2\le3y-y^2\)     (gt)

=>   \(P\ge\frac{9}{2\left(3y-y^2\right)}+\frac{4}{\left(y+2\right)^2}=\frac{9}{6y-2y^2}+\frac{4}{\left(y+2\right)^2}\)

TA SẼ CHỨNG MINH    \(\frac{9}{6y-2y^2+8}+\frac{4}{\left(y+2\right)^2}\ge1\)

<=>   \(\left(y-2\right)^2\left(2y^2+10y+9\right)\ge0\)         (*)

 (CHỖ NÀY CẬU QUY ĐỒNG MẪU SỐ, RÚT GỌN RỒI PHÂN TÍCH NHÂN TỬ SẼ RA ĐƯỢC NHƯ THẾ NÀY, MÌNH LÀM TẮT NHA)

DO:   \(\hept{\begin{cases}\left(y-2\right)^2\ge0\forall y\\2y^2+10y+9\ge9>0\left(y\ge0\right)\end{cases}}\)

VẬY BĐT (*) LUÔN ĐÚNG !!!!!!

=>   \(P\ge1\)

DẤU "=" XẢY RA <=>   \(x=z=1;y=2\)

<=>   \(a=2;b=4;c=4\)

22 tháng 8 2020

Đề cho vậy đó, bn CM cái "giả thiết" giúp mk với:)

19 tháng 9 2019

Bài 1:

\(A=\frac{x+1}{x^2+x+1}\)

\(\Leftrightarrow Ax^2+Ax+A=x+1\)

\(\Leftrightarrow Ax^2+Ax+A-x-1=0\)

\(\Leftrightarrow x^2\cdot A+x\cdot\left(A-1\right)+\left(A-1\right)=0\)

Để pt có nghiệm thì \(\Delta\ge0\)

\(\Leftrightarrow\left(A-1\right)^2-4\left(A-1\right)\cdot A\ge0\)

\(\Leftrightarrow A^2-2A+1-4A^2+4A\ge0\)

\(\Leftrightarrow-3A^2+2A+1\ge0\)

\(\Leftrightarrow\left(A-1\right)\left(3A+1\right)\le0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}A-1\le0\\3A+1\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}A-1\ge0\\3A+1\le0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\frac{-1}{3}\le A\le1\left(chon\right)\\1\le A\le\frac{-1}{3}\left(loai\right)\end{matrix}\right.\)

Vậy \(minA=\frac{-1}{3};maxA=1\)

Bài 2:

\(VT=\Sigma\frac{c\left(a+b+c\right)+ab}{a+b}=\Sigma\frac{ac+bc+c^2+ab}{a+b}=\Sigma\frac{\left(a+c\right)\left(b+c\right)}{\left(a+b\right)}\)

Áp dụng BĐT quen thuộc \(x^2+y^2+z^2\ge xy+yz+zx\) :

\(VT\ge\Sigma\sqrt{\frac{\left(a+c\right)\left(b+c\right)\left(a+b\right)\left(b+c\right)}{\left(a+c\right)\left(a+b\right)}}=\Sigma\sqrt{\left(b+c\right)^2}=\Sigma\left(b+c\right)=2\cdot\left(a+b+c\right)=2\)

Dấu "=" xảy ra \(\Leftrightarrow\frac{\left(a+c\right)\left(b+c\right)}{a+b}=\frac{\left(a+c\right)\left(a+b\right)}{b+c}=\frac{\left(a+b\right)\left(b+c\right)}{a+c}\)

8 tháng 5 2016

Hoàn toàn chính xác

27 tháng 7 2017

Ta có

\(\frac{a+1}{b^2+1}=\left(a+1\right)-\frac{ab^2+b^2}{b^2+1}\ge\left(a+1\right)-\frac{ab^2+b^2}{2b}=\left(a+1\right)-\frac{ab+b}{2}\)   (1)

Tương tự  \(\frac{b+1}{c^2+1}\ge\left(b+1\right)-\frac{bc+c}{2}\)   (2)

và  \(\frac{c+1}{a^2+1}\ge\left(a+1\right)-\frac{ca+a}{2}\)   (3)

Cộng (1), (2), (3) vế theo vế:

\(VT\ge\left(a+b+c+3\right)-\frac{\left(ab+bc+ca\right)+\left(a+b+c\right)}{2}\ge6-\frac{\frac{\left(a+b+c\right)^2}{3}+3}{2}=3\)

Đẳng thức xảy ra  \(\Leftrightarrow a=b=c=1\)