K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2017

Theo bất đẳng thức côsi, ta có:

\(a^2+b^2\ge2ab\)

\(b^2+c^2\ge2bc\)

\(c^2+d^2\ge2cd\)

\(a^2+d^2\ge2ad\)

\(\Rightarrow3\left(a^2+b^2+c^2+d^2\right)\)\(\ge2ab+2bc+2cd+2ad\)

Cộng vào hai vế:\(a^2+b^2+c^2+d^2\), ta có:

\(4\left(a^2+b^2+c^2+d^2\right)\)\(\ge\left(a+b+c+d\right)^2\)

Mà a + b + c + d = 4

\(\Rightarrow4\left(a^2+b^2+c^2+d^2\right)\)\(\ge4\)

\(\Rightarrow a^2+b^2+c^2+d^2\)\(\ge1\)

28 tháng 1 2019

Áp dụng BĐT Bunhiacopxki, ta có:

\(a+b+c+d\le\sqrt{\left(1^2+1^2+1^2+1^2\right)\left(a^2+b^2+c^2+d^2\right)}=2\sqrt{a^2+b^2+c^2+d^2}\)

\(\Leftrightarrow\sqrt{a^2+b^2+c^2+d^2}\ge1\)

\(\Leftrightarrow a^2+b^2+c^2+d^2\ge1\)(đpcm).

26 tháng 8 2017

a; b; c; d Có điều kiện gì không bạn?

26 tháng 8 2017

Dùng Bunyakovsky , có :

\(\left(1+1+1+1\right)\left(a^2+b^2+c^2+d^2\right)\ge\left(a+b+c+d\right)^2=4\)

\(\left(1+1+1+1\right)\left(a^2+b^2+c^2+d^2\right)\ge4\)

\(\left(a^2+b^2+c^2+d^2\right)\ge1\)

30 tháng 8 2018

1. Ta có : \(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)

          \(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{a+b}{a+b+c+d}\)

          \(\frac{c}{a+b+c+d}< \frac{c}{a+c+d}< \frac{b+c}{a+b+c+d}\)

         \(\frac{d}{a+b+c+d}< \frac{d}{a+b+d}< \frac{c+d}{a+b+c+d}\)

Cộng vế theo vế ta được :

\(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)             ( đpcm )

2. Áp dụng bất đẳng thức Cô - si cho 2 số ko âm b-1 và 1 ta có :

\(\sqrt{\left(b-1\right)\cdot1}\le\frac{\left(b-1\right)+1}{2}=\frac{b}{2}\)

Dấu "=" xảy ra <=> b - 1 = 1    <=> b = 2

\(\Rightarrow a\sqrt{b-1}=a\sqrt{\left(b-1\right)\cdot1}\le a\cdot\frac{b}{2}=\frac{ab}{2}\)

Tương tự ta có : \(b\sqrt{a-1}\le\frac{ab}{2}\) Dấu "=" xảy ra <=> a = 2

Do đó : \(a\sqrt{b-1}+b\sqrt{a-1}\le\frac{ab}{2}+\frac{ab}{2}=ab\)

Dấu "=" xảy ra <=> a = b = 2

NV
27 tháng 7 2021

BĐT mà ghi thiếu điều kiện thì chết rồi, vì số thực, số dương, số không âm nó hoạt động khác nhau lắm 

Bunhiacopxki: \(\left(ac+bd\right)^2\le\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(a^2+b^2\right)^4\)

\(\Rightarrow ac+bd\le\left(a^2+b^2\right)^2\)

Do đó:

\(\dfrac{a^3}{c}+\dfrac{b^3}{d}=\dfrac{a^4}{ac}+\dfrac{b^4}{bd}\ge\dfrac{\left(a^2+b^2\right)^2}{ac+bd}\ge\dfrac{\left(a^2+b^2\right)^2}{\left(a^2+b^2\right)^2}=1\) (đpcm)

NV
27 tháng 7 2021

Đề bài sai: phản ví dụ:

\(a=b=-1\) ; \(c=d=2\)

Khi đó: \(c^2+d^2=\left(a^2+b^2\right)^3\) nhưng \(\dfrac{a^3}{c}+\dfrac{b^3}{d}=-1< 1\)

19 tháng 8 2018

áp dụng bunhiacopxki ta có :

\(4\left(a^2+b^2+c^2+d^2\right)\ge\left(a+b+c+d\right)^2=4\)

\(\Rightarrow a^2+b^2+c^2+d^2\ge1\left(đpcm\right)\)

NV
19 tháng 6 2019

a/ Đề sai (ko nói đến chuyện nhầm lẫn ở hạng tử thứ 2 lẽ ra là bc), bạn cho \(a=b=c=d=0,1\) là thấy vế trái lớn hơn vế phải

b/ \(\frac{1}{2}xy.2xy\left(x^2+y^2\right)\le\frac{1}{2}.\frac{\left(x+y\right)^2}{4}.\frac{\left(2xy+x^2+y^2\right)^2}{4}=\frac{\left(x+y\right)^6}{32}=\frac{64}{32}=2\)

Dấu "=" xảy ra khi \(x=y=1\)

c/ Bình phương 2 vế:

\(\Leftrightarrow\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}+2\left(a^2+b^2+c^2\right)\ge3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}\ge a^2+b^2+c^2\)

Ta có: \(\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}\ge2b^2\) ; \(\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}\ge2c^2\); \(\frac{a^2b^2}{c^2}+\frac{a^2c^2}{b^2}\ge2a^2\)

Cộng vế với vế:

\(2\left(\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}\right)\ge2\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow...\)

Dấu "=" xảy ra khi \(a=b=c\)