K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 8 2022

Đặt \(P=\dfrac{a}{\sqrt{b^3+1}}+\dfrac{b}{\sqrt{c^3+1}}+\dfrac{c}{\sqrt{a^3+1}}\)

\(=\dfrac{a}{\sqrt{\left(b+1\right)\left(b^2-b+1\right)}}+\dfrac{b}{\sqrt{\left(c+1\right)\left(c^2-c+1\right)}}+\dfrac{c}{\sqrt{\left(a+1\right)\left(a^2-a+1\right)}}\)

\(\Rightarrow P\ge\dfrac{2a}{b+1+b^2-b+1}+\dfrac{2b}{c+1+c^2-c+1}+\dfrac{2c}{a+1+a^2-a+1}=\dfrac{2a}{b^2+2}+\dfrac{2b}{c^2+2}+\dfrac{2c}{a^2+2}\)

Mặt khác với mọi \(a>0\) ta có:

\(\dfrac{1}{a^2+2}\ge\dfrac{7-2a}{18}\)

Thật vậy, BĐT trên tương đương:

\(18-\left(7-2a\right)\left(a^2+2\right)\ge0\)

\(\Leftrightarrow\left(a-2\right)^2\left(2a+1\right)\ge0\) (luôn đúng)

Từ đó \(\Rightarrow P\ge\dfrac{2a\left(7-2b\right)}{18}+\dfrac{2b\left(7-2c\right)}{18}+\dfrac{2c\left(7-2a\right)}{18}\)

\(\Rightarrow P\ge\dfrac{7\left(a+b+c\right)}{9}-\dfrac{2\left(ab+bc+ca\right)}{9}\ge\dfrac{7\left(a+b+c\right)}{9}-\dfrac{2\left(a+b+c\right)^2}{27}=2\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=2\)

NV
14 tháng 9 2021

\(\dfrac{a^3}{1+b}+\dfrac{1+b}{4}+\dfrac{1}{2}\ge3\sqrt[3]{\dfrac{a^3\left(1+b\right)}{8\left(a+b\right)}}=\dfrac{3a}{2}\)

\(\dfrac{b^3}{1+c}+\dfrac{1+c}{4}+\dfrac{1}{2}\ge\dfrac{3b}{2}\) ; \(\dfrac{c^3}{1+a}+\dfrac{1+a}{4}+\dfrac{1}{2}\ge\dfrac{3c}{2}\)

\(\Rightarrow VT+\dfrac{a+b+c}{4}+\dfrac{9}{4}\ge\dfrac{3}{2}\left(a+b+c\right)\)

\(\Rightarrow VT\ge\dfrac{5}{4}\left(a+b+c\right)-\dfrac{9}{4}\ge\dfrac{5}{4}.3\sqrt[3]{abc}-\dfrac{9}{4}=\dfrac{3}{2}\)

AH
Akai Haruma
Giáo viên
17 tháng 7 2021

Cho $a=b=c=1$ thì thỏa mãn đẳng thức nhưng $abc+1=2\neq 0$

Bạn xem lại đề. 

 

24 tháng 6 2021

Đặt A = \(\dfrac{a-b}{1+c^2}+\dfrac{b-c}{1+a^2}+\dfrac{c-a}{1+b^2}=0\)

\(\dfrac{a-b}{c^2+ab+bc+ca}+\dfrac{b-c}{a^2+ab+bc+ca}+\dfrac{c-a}{b^2+ab+bc+ca}\)

\(\dfrac{a-b}{\left(c+a\right)\left(c+b\right)}+\dfrac{b-c}{\left(a+b\right)\left(c+a\right)}+\dfrac{c-a}{\left(a+b\right)\left(b+c\right)}\)

\(\dfrac{\left(a-b\right)\left(a+b\right)+\left(b-c\right)\left(b+c\right)+\left(c+a\right)\left(c-a\right)}{\left(c+a\right)\left(b+c\right)\left(a+b\right)}\)

\(\dfrac{a^2-b^2+b^2-c^2+c^2-a^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=0\)

24 tháng 6 2021

\(\dfrac{a-b}{1+c^2}+\dfrac{b-c}{1+a^2}+\dfrac{c-a}{1+b^2}\)

\(=\dfrac{a-b}{ab+bc+ca+c^2}+\dfrac{b-c}{ab+bc+ca+a^2}+\dfrac{c-a}{ab+bc+ca+b^2}\)

\(=\dfrac{a-b}{\left(c+a\right)\left(c+b\right)}+\dfrac{b-c}{\left(a+b\right)\left(a+c\right)}+\dfrac{c-a}{\left(b+a\right)\left(b+c\right)}\)

\(=\dfrac{\left(a-b\right)\left(a+b\right)+\left(b-c\right)\left(b+c\right)+\left(c-a\right)\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(=\dfrac{a^2-b^2+b^2-c^2+c^2-a^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=0\)

29 tháng 8 2018

Theo giả thiết: \(a+b+c=3\Rightarrow b+c=3-a\). Tương tự: a+b=3-a và c+a=3-b

Khi đó \(\frac{1}{a^2+b+c}+\frac{1}{b^2+c+a}+\frac{1}{c^2+a+b}=\frac{1}{a^2-a+3}+\frac{1}{b^2-b+3}+\frac{1}{c^2-c+3}\)

Ta chứng minh BĐT phụ sau:

\(\frac{1}{a^2-a+3}\le\frac{4-a}{9}\)(1)

Thật vậy, BĐT (1) \(\Leftrightarrow9\le\left(4-a\right)\left(a^2-a+3\right)\)

\(\Leftrightarrow9\le-a^3+5a^2-7a+12\)\(\Leftrightarrow-a^3+5a^2-7a+3\ge0\)

\(\Leftrightarrow-a^3+a^2+4a^2-4a-3a+3\ge0\)

\(\Leftrightarrow-a^2\left(a-1\right)+4a\left(a-1\right)-3\left(a-1\right)\ge0\)

\(\Leftrightarrow\left(a-1\right)\left(-a^2+4a-3\right)\ge0\)

\(\Leftrightarrow\left(a-1\right)\left(-a^2+a+3a-3\right)\ge0\)

\(\Leftrightarrow\left(a-1\right)\left[-a\left(a-1\right)+3\left(a-1\right)\right]\ge0\)

\(\Leftrightarrow\left(a-1\right)^2\left(3-a\right)\ge0\)(2)

Ta thấy \(a;b;c>0\) và \(a+b+c=3\Rightarrow a< 3\)\(\Rightarrow3-a>0\)

Mà \(\left(a-1\right)^2\ge0\forall a\). Nên \(\left(a-1\right)^2\left(3-a\right)\ge0\)

Do đó: BĐT (2) luôn đúng với mọi 0<a<3 => BĐT (1) cũng đúng

Chứng minh tương tự \(\frac{1}{b^2-b+3}\le\frac{4-b}{9};\frac{1}{c^2-c+3}\le\frac{4-c}{9}\)

Từ đó suy ra:

\(\frac{1}{a^2-a+3}+\frac{1}{b^2-b+3}+\frac{1}{c^2-c+3}\le\frac{12-\left(a+b+c\right)}{9}=\frac{12-3}{9}=1\)(Do a+b+c=3)

=> ĐPCM.

29 tháng 12 2018

Cho x,y,z € Z+ tm: x+y+z=4

Tính A= \(\sqrt{ }\)x(4-y)(4-z) +\(\sqrt{ }\)y(4-x)(4-x) +\(\sqrt{ }\)z(4-x)(4-y) -\(\sqrt{ }\)xyz

31 tháng 7 2019

1. BĐT ban đầu

<=> \(\left(\frac{1}{3}-\frac{b}{a+3b}\right)+\left(\frac{1}{3}-\frac{c}{b+3c}\right)+\left(\frac{1}{3}-\frac{a}{c+3a}\right)\ge\frac{1}{4}\)

<=>\(\frac{a}{a+3b}+\frac{b}{b+3c}+\frac{c}{c+3a}\ge\frac{3}{4}\)

<=> \(\frac{a^2}{a^2+3ab}+\frac{b^2}{b^2+3bc}+\frac{c^2}{c^2+3ac}\ge\frac{3}{4}\)

Áp dụng BĐT buniacoxki dang phân thức 

=> BĐT cần CM

<=> \(\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+3\left(ab+bc+ac\right)}\ge\frac{3}{4}\)

<=> \(a^2+b^2+c^2\ge ab+bc+ac\)luôn đúng 

=> BĐT được CM

31 tháng 7 2019

2) \(a+b+c\le ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)\(\Leftrightarrow\)\(\left(a+b+c\right)^2-3\left(a+b+c\right)\ge0\)

\(\Leftrightarrow\)\(\left(a+b+c\right)\left(a+b+c-3\right)\ge0\)\(\Leftrightarrow\)\(a+b+c\ge3\)

ko mất tính tổng quát giả sử \(a\ge b\ge c\)

Có: \(3\le a+b+c\le ab+bc+ca\le3a^2\)\(\Leftrightarrow\)\(3a^2\ge3\)\(\Leftrightarrow\)\(a\ge1\)

=> \(\frac{1}{1+a+b}+\frac{1}{1+b+c}+\frac{1}{1+c+a}\le\frac{3}{1+2a}\le1\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=1\)

30 tháng 12 2019

\(\frac{a+1}{b^2+1}=\frac{\left(a+1\right)\left(b^2+1\right)-b^2\left(a+1\right)}{b^2+1}=a+1-\frac{b^2\left(a+1\right)}{b^2+1}\)

\(\ge a+1-\frac{b^2\left(a+1\right)}{2b}=a+1-\frac{ab+a}{2}\)

Thiết lập các bất đẳng thức tương tự rồi cộng lại ta được:

\(LHS\ge a+b+c+3-\frac{ab+bc+ca+3}{2}\ge6-\frac{\frac{\left(a+b+c\right)^2}{3}+3}{2}=3=RHS\)