K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2018

\(\dfrac{a}{\left(b+c\right)^2}+\dfrac{b}{\left(c+a\right)^2}+\dfrac{c}{\left(a+b\right)^2}=\dfrac{\left(\dfrac{a}{b+c}\right)^2}{a}+\dfrac{\left(\dfrac{b}{c+a}\right)^2}{b}+\dfrac{\left(\dfrac{c}{a+b}\right)^2}{c}\)

\(\ge\dfrac{\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)^2}{a+b+c}\ge\dfrac{\left(\dfrac{3}{2}\right)^2}{1}=\dfrac{9}{4}\)

30 tháng 7 2018

Ta có:

\(BĐT\Leftrightarrow\left(a+b+c\right)\left(\dfrac{a}{\left(b+c\right)^2}+\dfrac{b}{\left(a+c\right)^2}+\dfrac{c}{\left(a+b\right)^2}\right)\ge\dfrac{9}{4}\)

Rồi giải tương tự bài này:

Câu hỏi của phạm thảo - Toán lớp 10 | Học trực tuyến

1 tháng 10 2017

Fix đề: Cho a,b,c không âm. Chứng minh \(\dfrac{1}{\left(a-b\right)^2}+\dfrac{1}{\left(b-c\right)^2}+\dfrac{1}{\left(c-a\right)^2}\ge\dfrac{4}{ab+bc+ca}\)

Dự đoán điểm rơi sẽ có 1 số bằng 0.

Giả sử \(c=min\left\{a,b,c\right\}\) ( c là số nhỏ nhất trong 3 số) thì \(c\ge0\)

do đó \(ab+bc+ca\ge ab\)\(\dfrac{1}{\left(b-c\right)^2}\ge\dfrac{1}{b^2};\dfrac{1}{\left(c-a\right)^2}=\dfrac{1}{\left(a-c\right)^2}\ge\dfrac{1}{a^2}\)

BDT cần chứng minh tương đương

\(ab\left[\dfrac{1}{\left(a-b\right)^2}+\dfrac{1}{a^2}+\dfrac{1}{b^2}\right]\ge4\)

\(\Leftrightarrow\dfrac{ab}{\left(a-b\right)^2}+\dfrac{a^2+b^2}{ab}\ge4\)

\(\Leftrightarrow\dfrac{ab}{\left(a-b\right)^2}+\dfrac{\left(a-b\right)^2}{ab}+2\ge4\)

BĐT trên hiển nhiên đúng theo AM-GM.

Do đó ta có đpcm. Dấu = xảy ra khi c=0 , \(\left(a-b\right)^2=a^2b^2\) ( và các hoán vị )

1 tháng 10 2017

a,b,c không âm

7 tháng 5 2017

Theo hệ quả của bất đẳng thức Cauchy

\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow\dfrac{a^2}{2}+\dfrac{b^2}{c}+\dfrac{c^2}{c}\ge\dfrac{ab}{2}+\dfrac{bc}{2}+\dfrac{ca}{2}\)

\(\Leftrightarrow a^2-\dfrac{a^2}{2}+b^2-\dfrac{b^2}{2}+c^2-\dfrac{c^2}{2}\ge\dfrac{ab}{2}+\dfrac{bc}{2}+\dfrac{ca}{2}\)

\(\Leftrightarrow a^2+b^2+c^2\ge\dfrac{a^2+b^2+c^2+ab+bc+ca}{2}\)

\(\Leftrightarrow a^2+b^2+c^2\ge\dfrac{2\left(a^2+b^2+c^2+ab+bc+ca\right)}{4}\)

\(\Leftrightarrow a^2+b^2+c^2\ge\dfrac{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2}{4}\) (1)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow a^2+b^2\ge2\sqrt{a^2b^2}=2ab\)

\(\Rightarrow\left(a+b\right)^2\ge4ab\)

Tương tự ta có \(\left\{{}\begin{matrix}\left(b+c\right)^2\ge4bc\\\left(c+a\right)^2\ge4ca\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(a+b\right)^2c+\left(a+b\right)^2\ge4abc+\left(a+b\right)^2\\\left(b+c\right)^2a+\left(b+c\right)^2\ge4abc+\left(b+c\right)^2\\\left(c+a\right)^2b+\left(c+a\right)^2\ge4abc+\left(c+a\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(a+b\right)^2\left(c+1\right)\ge4abc+\left(a+b\right)^2\\\left(b+c\right)^2\left(a+1\right)\ge4abc+\left(b+c\right)^2\\\left(c+a\right)^2\left(b+1\right)\ge4abc+\left(c+a\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{8}{\left(a+b\right)^2\left(c+1\right)}\le\dfrac{8}{4abc+\left(a+b\right)^2}\\\dfrac{8}{\left(b+c\right)^2\left(a+1\right)}\le\dfrac{8}{4abc+\left(b+c\right)^2}\\\dfrac{8}{\left(c+a\right)^2\left(b+1\right)}\le\dfrac{8}{4abc+\left(c+a\right)^2}\end{matrix}\right.\) (2)

Từ (1) và (2)

\(\Rightarrow VT\ge\dfrac{8}{\left(a+b\right)^2\left(c+1\right)}+\dfrac{8}{\left(b+c\right)^2\left(a+1\right)}+\dfrac{8}{\left(c+a\right)^2\left(b+1\right)}+\dfrac{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a^2\right)}{4}\) (3)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\dfrac{8}{\left(a+b\right)^2\left(c+1\right)}+\dfrac{\left(a+b\right)^2}{4}\ge2\sqrt{\dfrac{2}{c+1}}=\dfrac{4}{\sqrt{2\left(c+1\right)}}\)

Tương tự ta có \(\left\{{}\begin{matrix}\dfrac{8}{\left(b+c\right)^2\left(a+1\right)}+\dfrac{\left(b+c\right)^2}{4}\ge\dfrac{4}{\sqrt{2\left(a+1\right)}}\\\dfrac{8}{\left(c+a\right)^2\left(b+1\right)}+\dfrac{\left(c+a\right)^2}{4}\ge\dfrac{4}{\sqrt{2\left(b+1\right)}}\end{matrix}\right.\)

\(\Rightarrow\dfrac{8}{\left(a+b\right)^2\left(c+1\right)}+\dfrac{8}{\left(b+c\right)^2\left(a+1\right)}+\dfrac{8}{\left(c+a\right)^2\left(b+1\right)}+\dfrac{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a^2\right)}{4}\ge\dfrac{4}{\sqrt{2\left(c+1\right)}}+\dfrac{4}{\sqrt{2\left(a+1\right)}}+\dfrac{4}{\sqrt{2\left(b+1\right)}}\)(4)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\sqrt{2\left(c+1\right)}\le\dfrac{c+3}{2}\)

\(\Rightarrow\dfrac{4}{\sqrt{2\left(c+1\right)}}\ge\dfrac{8}{c+3}\)

Tượng tự ta có \(\left\{{}\begin{matrix}\dfrac{4}{\sqrt{2\left(a+1\right)}}\ge\dfrac{8}{a+3}\\\dfrac{4}{\sqrt{2\left(b+1\right)}}\ge\dfrac{8}{b+3}\end{matrix}\right.\)

\(\Rightarrow\dfrac{4}{\sqrt{2\left(c+1\right)}}+\dfrac{4}{\sqrt{2\left(a+1\right)}}+\dfrac{4}{\sqrt{2\left(b+1\right)}}\ge\dfrac{8}{a+3}+\dfrac{8}{b+3}+\dfrac{8}{c+3}\) (5)

Từ điều (3) , (4) , (5)

\(\Rightarrow\dfrac{8}{\left(a+b\right)^2+4abc}+\dfrac{8}{\left(b+c\right)^2+4abc}+\dfrac{8}{\left(c+a\right)^2+4abc}+a^2+b^2+c^2\ge\dfrac{8}{a+3}+\dfrac{8}{b+3}+\dfrac{8}{c+3}\) ( đpcm )

26 tháng 11 2018

@Akai Haruma

AH
Akai Haruma
Giáo viên
27 tháng 11 2018

Lời giải:

Vì $a+b+c=1$ nên:
\(\text{VT}=\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{4}\left(\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\right)\)

\(=\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{4}\left(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\right)+\frac{3}{4}\)

\(=\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{4}\left(\frac{a}{b}+\frac{b}{a}+\frac{b}{c}+\frac{c}{b}+\frac{c}{a}+\frac{a}{c}\right)+\frac{3}{4}\)

\(=(\frac{ab}{a^2+b^2}+\frac{a^2+b^2}{4ab})+(\frac{bc}{b^2+c^2}+\frac{b^2+c^2}{4bc})+(\frac{ca}{c^2+a^2}+\frac{c^2+a^2}{4ac})+\frac{3}{4}\)

\(\geq 2\sqrt{\frac{1}{4}}+2\sqrt{\frac{1}{4}}+2\sqrt{\frac{1}{4}}+\frac{3}{4}=\frac{15}{4}\) (áp dụng BĐT AM-GM)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$

12 tháng 1 2021

Bài này trong đề nào đó mới đây:

Đặt \(\dfrac{a+b}{a-b}=x;\dfrac{b+c}{b-c}=y;\dfrac{c+a}{c-a}=z\).

Ta có: \(2P=\dfrac{\left(a-b\right)^2+\left(a+b\right)^2}{\left(a-b\right)^2}+\dfrac{\left(b-c\right)^2+\left(b+c\right)^2}{\left(b-c\right)^2}+\dfrac{\left(c-a\right)^2+\left(c+a\right)^2}{\left(c-a\right)^2}=3+x^2+y^2+z^2=3+\left(x+y+z\right)^2-2\left(xy+yz+zx\right)\),

Mặt khác dễ dàng chứng minh được: \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=\left(x-1\right)\left(y-1\right)\left(z-1\right)\Leftrightarrow xy+yz+zx=-1\).

Từ đó \(2P=\left(x+y+z\right)^2+5\ge5\Leftrightarrow P\ge\dfrac{5}{2}\).

Bài này là bất đẳng thức nên mình không tìm điểm rơi.

NV
15 tháng 3 2022

\(\dfrac{a^3}{\left(b+2\right)\left(c+3\right)}+\dfrac{b+2}{36}+\dfrac{c+3}{48}\ge3\sqrt[3]{\dfrac{a^3\left(b+2\right)\left(c+3\right)}{1728\left(b+2\right)\left(c+3\right)}}=\dfrac{a}{4}\)

Tương tự: \(\dfrac{b^3}{\left(c+2\right)\left(a+3\right)}+\dfrac{c+2}{36}+\dfrac{a+3}{48}\ge\dfrac{b}{4}\)

\(\dfrac{c^3}{\left(a+2\right)\left(b+3\right)}+\dfrac{a+2}{36}+\dfrac{b+3}{48}\ge\dfrac{c}{4}\)

Cộng vế:

\(P+\dfrac{7\left(a+b+c\right)}{144}+\dfrac{17}{48}\ge\dfrac{a+b+c}{4}\)

\(\Rightarrow P\ge\dfrac{29}{144}\left(a+b+c\right)-\dfrac{17}{48}\ge\dfrac{29}{144}.3\sqrt[3]{abc}-\dfrac{17}{48}=\dfrac{1}{4}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

NV
19 tháng 12 2020

\(VT=\sum\dfrac{a^2}{a+3abc+4\left(ab+ac\right)}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+9abc+8\left(ab+bc+ca\right)}\)

\(VT\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+\dfrac{1}{3}\left(a+b+c\right)^3+\dfrac{8}{3}\left(a+b+c\right)^2}=\dfrac{1}{4}\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=\dfrac{1}{3}\)

Đề bài bị sai con số bên vế phải

4 tháng 6 2021

Áp dụng bđt bunhiacopxki có:

\(\left(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\right)\left(x+y+z\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\ge\dfrac{\left(a+b+c\right)^2}{x+y+z}\)

Dấu "=" xảy ra <=> \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)

5 tháng 6 2021

BĐT này gọi là BĐT Cauchy-Schwarz đó bạn.

Chứng minh BĐT: \(\dfrac{a^2}{x}+\dfrac{b^2}{y}\ge\dfrac{\left(a+b\right)^2}{x+y}\)

\(\Rightarrow\dfrac{a^2y+b^2x}{xy}\ge\dfrac{\left(a+b\right)^2}{x+y}\Rightarrow\left(a^2y+b^2x\right)\left(x+y\right)\ge\left(a+b\right)^2.xy\)

\(\Leftrightarrow a^2y^2+b^2x^2-2abxy\ge0\Leftrightarrow\left(ay-by\right)^2\ge0\) (luôn đúng)

Áp dụng BĐT trên vào đề:

Ta được: \(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\ge\dfrac{\left(a+b\right)^2}{x+y}+\dfrac{c^2}{z}\ge\dfrac{\left(a+b+c\right)^2}{x+y+z}\)

 

NV
20 tháng 1 2019

Nhìn qua đã biết là đề sai rồi bạn

Cho \(a,b,c\) các giá trị lớn ví dụ \(a=b=c=2\) là thấy sai ngay