K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2017

Sửa phân số thứ nhất: \(\dfrac{a^2}{\sqrt{5a^2+32ab+b^2}}\rightarrow\dfrac{a^2}{\sqrt{5a^2+32ab+12b^2}}\)

Đề bài: \(P=\dfrac{a^2}{\sqrt{5a^2+32ab+12b^2}}+\dfrac{b^2}{\sqrt{5b^2+32bc+12c^2}}+\dfrac{c^2}{\sqrt{5c^2+32ac+12a^2}}\)

Lời giải

\(P=\dfrac{a^2}{\sqrt{5a^2+32ab+12b^2}}+\dfrac{b^2}{\sqrt{5b^2+32bc+12c^2}}+\dfrac{c^2}{\sqrt{5c^2+32ac+12a^2}}\)

\(\Leftrightarrow\dfrac{a^2}{\sqrt{5a^2+30ab+2ab+12b^2}}+\dfrac{b^2}{\sqrt{5b^2+30bc+2bc+12c^2}}+\dfrac{c^2}{\sqrt{5c^2+30ac+2ac+12a^2}}\)

\(\Leftrightarrow\dfrac{a^2}{\sqrt{5a\left(a+6b\right)+2b\left(a+6b\right)}}+\dfrac{b^2}{\sqrt{5b\left(b+6c\right)+2c\left(b+6c\right)}}+\dfrac{c^2}{\sqrt{5c\left(c+6a\right)+2a\left(c+6a\right)}}\)

\(\Leftrightarrow\dfrac{a^2}{\sqrt{\left(a+6b\right)\left(5a+2b\right)}}+\dfrac{b^2}{\sqrt{\left(b+6c\right)\left(5b+2c\right)}}+\dfrac{c^2}{\sqrt{\left(c+6a\right)\left(5c+2a\right)}}\)

Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức

\(\Rightarrow VT\ge\dfrac{\left(a+b+c\right)^2}{\sqrt{\left(a+6b\right)\left(5a+2b\right)}+\sqrt{\left(b+6c\right)\left(5b+2c\right)}+\sqrt{\left(c+6a\right)\left(5c+2a\right)}}\)

\(\Rightarrow VT\ge\dfrac{9}{\sqrt{\left(a+6b\right)\left(5a+2b\right)}+\sqrt{\left(b+6c\right)\left(5b+2c\right)}+\sqrt{\left(c+6a\right)\left(5c+2a\right)}}\) (1)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{\left(a+6b\right)\left(5a+2b\right)}\le\dfrac{6a+8b}{2}\\\sqrt{\left(b+6c\right)\left(5b+2c\right)}\le\dfrac{6b+8c}{2}\\\sqrt{\left(c+6a\right)\left(5c+2a\right)}\le\dfrac{6c+8a}{2}\end{matrix}\right.\)

\(\Rightarrow\sqrt{\left(a+6b\right)\left(5a+2b\right)}+\sqrt{\left(b+6c\right)\left(5b+2c\right)}+\sqrt{\left(c+6a\right)\left(5c+2a\right)}\le\dfrac{14\left(a+b+c\right)}{2}=21\)

\(\Rightarrow\dfrac{9}{\sqrt{\left(a+6b\right)\left(5a+2b\right)}+\sqrt{\left(b+6c\right)\left(5b+2c\right)}+\sqrt{\left(c+6a\right)\left(5c+2a\right)}}\ge\dfrac{3}{7}\) (2)

Từ (1) và (2)

\(\Rightarrow VT\ge\dfrac{3}{7}\)

\(\Leftrightarrow\dfrac{a^2}{\sqrt{5a^2+32ab+12b^2}}+\dfrac{b^2}{\sqrt{5b^2+32bc+12c^2}}+\dfrac{c^2}{\sqrt{5c^2+32ac+12a^2}}\ge\dfrac{3}{7}\)

\(\Leftrightarrow P\ge\dfrac{3}{7}\)

Vậy \(P_{min}=\dfrac{3}{7}\)

Dấu " = " xảy ra khi \(a=b=c=1\)

2 tháng 1 2022

Ta có \(a^2+\dfrac{1}{b+c}=a^2+\dfrac{1}{6-a}\)

Mà \(a+b+c=6\Rightarrow0\le a,b,c\le2\)

\(\Rightarrow a^2+\dfrac{1}{6-a}\ge2^2+\dfrac{1}{6-2}=\dfrac{17}{4}\)

\(\Rightarrow P=\sum\sqrt{a^2+\dfrac{1}{b+c}}=\sum\sqrt{a^2+\dfrac{1}{6-a}}\ge\sqrt{\dfrac{17}{4}}+\sqrt{\dfrac{17}{4}}+\sqrt{\dfrac{17}{4}}=\dfrac{3\sqrt{17}}{2}\)

Dấu \("="\Leftrightarrow a=b=c=2\)

2 tháng 1 2022

a + b + c >= 6 chứ có phải a + b + c = 6 đâu ạ?

12 tháng 5 2017

Do 1/b+1/c=3/4-1/a suy ra \(\sum\) (1a/)=3/4

Ta có \(\dfrac{\sqrt{b^2+bc+c^2}}{a^2}\)= \(\dfrac{\sqrt{\left(b+c\right)^2-bc}}{a^2}\ge\dfrac{\sqrt{\left(b+c\right)^2-\dfrac{\left(b+c\right)^2}{4}}}{a^2}=\dfrac{\sqrt{3}\left(b+c\right)}{2a^2}\)

Tương tự ta được:

P\(\ge\) \(\sqrt{3}\) \(\left(\sum\dfrac{b+c}{a^2}\right)\) \(\ge\) \(\sqrt{3}\) (1/a+1/b+1/c) \(\ge\dfrac{3\sqrt{3}}{4}\)

Đẳng thức xảy ra \(\Leftrightarrow\) a=b=c=4

2 tháng 1 2022

Áp dụng BĐT Minicopski, ta có:

\(P=\sqrt{a^2+\dfrac{1}{a^2}}+\sqrt{b^2+\dfrac{1}{b^2}}\ge\sqrt{\left(a+b\right)^2+\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2}\\ \Rightarrow P\ge\sqrt{4^2+\left(\dfrac{4}{a+b}\right)^2}=\sqrt{16+\left(\dfrac{4}{4}\right)^2}=\sqrt{17}\)

Đẳng thức xảy ra \(\Leftrightarrow a=b=2\)

2 tháng 1 2022

Áp dụng BĐT Cô si

⇒ P≥ \(\sqrt{2\sqrt{a^2.\dfrac{1}{a^2}}}+\sqrt{2\sqrt{b^2.\dfrac{1}{b^2}}}\)

\(=\sqrt{2}+\sqrt{2}\)

\(=2\sqrt{2}\)

AH
Akai Haruma
Giáo viên
29 tháng 1 2021

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\((a^2+\frac{1}{b^2})(1+4^2)\geq (a+\frac{4}{b})^2\Rightarrow \sqrt{a^2+\frac{1}{b^2}}\geq \frac{1}{\sqrt{17}}(a+\frac{4}{b})\)

Hoàn toàn tương tự với những cái còn lại và cộng theo vế suy ra:

$S\geq \frac{1}{\sqrt{17}}(a+b+c+\frac{4}{a}+\frac{4}{b}+\frac{4}{c})$

$\geq \frac{1}{\sqrt{17}}(a+b+c+\frac{36}{a+b+c})$ theo BĐT Cauchy-Schwarz.

Áp dụng BĐT AM-GM:

\(a+b+c+\frac{9}{4(a+b+c)}\geq 3\)

\(\frac{135}{4(a+b+c)}\geq \frac{135}{4.\frac{3}{2}}=\frac{45}{2}\)

\(\Rightarrow a+b+c+\frac{36}{a+b+c}\geq \frac{51}{2}\)

\(\Rightarrow S\geq \frac{3\sqrt{17}}{2}\)

Vậy $S_{\min}=\frac{3\sqrt{17}}{2}$

 

AH
Akai Haruma
Giáo viên
29 tháng 1 2021

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\((a^2+\frac{1}{b^2})(1+4^2)\geq (a+\frac{4}{b})^2\Rightarrow \sqrt{a^2+\frac{1}{b^2}}\geq \frac{1}{\sqrt{17}}(a+\frac{4}{b})\)

Hoàn toàn tương tự với những cái còn lại và cộng theo vế suy ra:

$S\geq \frac{1}{\sqrt{17}}(a+b+c+\frac{4}{a}+\frac{4}{b}+\frac{4}{c})$

$\geq \frac{1}{\sqrt{17}}(a+b+c+\frac{36}{a+b+c})$ theo BĐT Cauchy-Schwarz.

Áp dụng BĐT AM-GM:

\(a+b+c+\frac{9}{4(a+b+c)}\geq 3\)

\(\frac{135}{4(a+b+c)}\geq \frac{135}{4.\frac{3}{2}}=\frac{45}{2}\)

\(\Rightarrow a+b+c+\frac{36}{a+b+c}\geq \frac{51}{2}\)

\(\Rightarrow S\geq \frac{3\sqrt{17}}{2}\)

Vậy $S_{\min}=\frac{3\sqrt{17}}{2}$

 

NV
6 tháng 4 2022

Ta có:

\(\left(a^2+b+c\right)\left(1+b+c\right)\ge\left(a+b+c\right)^2\)

\(\Rightarrow\dfrac{a}{\sqrt{a^2+b+c}}\le\dfrac{a\sqrt{1+b+c}}{a+b+c}\)

Tương tự: \(\dfrac{b}{\sqrt{b^2+a+c}}\le\dfrac{b\sqrt{1+c+a}}{a+b+c}\) ; \(\dfrac{c}{\sqrt{c^2+b+a}}\le\dfrac{c\sqrt{1+a+b}}{a+b+c}\)

Cộng vế:

\(P\le\dfrac{a\sqrt{1+b+c}+b\sqrt{1+c+a}+c\sqrt{1+a+b}}{a+b+c}\)

Lại có:

\(a\sqrt{1+b+c}+b\sqrt{1+c+a}+c\sqrt{1+a+b}\)

\(=\sqrt{a}.\sqrt{a+ab+ac}+\sqrt{b}.\sqrt{b+bc+ab}+\sqrt{c}.\sqrt{c+ac+bc}\)

\(\le\sqrt{\left(a+b+c\right)\left(a+b+c+2ab+2bc+2ca\right)}\)

\(\Rightarrow P\le\dfrac{\sqrt{\left(a+b+c\right)\left(a+b+c+2ab+bc+ca\right)}}{a+b+c}=\sqrt{\dfrac{a+b+c+2ab+2bc+2ca}{a+b+c}}\)

Do đó ta chỉ cần chứng minh:

\(\dfrac{a+b+c+2ab+2bc+2ca}{a+b+c}\le3\Leftrightarrow a+b+c\ge ab+bc+ca\)

Thật vậy:

\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)=\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)\ge\left(ab+bc+ca\right)^2\)

\(\Rightarrow a+b+c\ge ab+bc+ca\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

26 tháng 5 2017

Áp dụng bất đẳng thức Bunyakovsky

\(\Rightarrow\sqrt{\left(\dfrac{8}{a^2}+\dfrac{9b^2}{2}+\dfrac{c^2a^2}{4}\right)\left[\left(\sqrt{2}\right)^2+\left(3\sqrt{2}\right)^2+2^2\right]}\ge\left(\sqrt{\dfrac{4}{a}+9b+ca}\right)^2\)

\(\Leftrightarrow2\sqrt{6}\sqrt{\dfrac{8}{a^2}+\dfrac{9b^2}{2}+\dfrac{c^2a^2}{4}}\ge\dfrac{4}{a}+9b+ac\)

Tương tự ta có \(\left\{{}\begin{matrix}2\sqrt{6}\sqrt{\left(\dfrac{8}{b^2}+\dfrac{9c^2}{2}+\dfrac{a^2b^2}{4}\right)}\ge\dfrac{4}{b}+9c+ab\\2\sqrt{6}\sqrt{\left(\dfrac{8}{c^2}+\dfrac{9a^2}{2}+\dfrac{b^2c^2}{4}\right)}\ge\dfrac{4}{c}+9a+bc\end{matrix}\right.\)

\(\Rightarrow2\sqrt{6}S\ge\dfrac{4}{a}+9a+\dfrac{4}{b}+9b+\dfrac{4}{c}+9c+ab+bc+ac\)

\(\Leftrightarrow2\sqrt{6}S\ge\dfrac{4}{a}+a+8a+\dfrac{4}{b}+b+8b+\dfrac{4}{c}+c+8c+ab+bc+ca\)

Áp dụng bất đẳng thức Cauchy

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{4}{a}+a\ge2\sqrt{4}=4\\\dfrac{4}{b}+b\ge2\sqrt{4}=4\\\dfrac{4}{c}+c\ge2\sqrt{4}=4\end{matrix}\right.\)

\(\Rightarrow\dfrac{4}{a}+a+8a+\dfrac{4}{b}+b+8b+\dfrac{4}{c}+c+8c+ab+bc+ca\ge12+8a+8b+8c+ab+bc+ac\)

\(\Rightarrow2\sqrt{6}S\ge12+8a+8b+8c+ab+bc+ac\)

\(\Leftrightarrow2\sqrt{6}S\ge12+2a+bc+2b+ac+2c+ab+6\left(a+b+c\right)\)

Áp dụng bất đẳng thức Cauchy

\(\Rightarrow2a+bc\ge2\sqrt{2abc}\)

Tượng tự ta có \(2b+ac\ge2\sqrt{2abc}\) ; \(2c+ab\ge2\sqrt{2abc}\)

\(\Rightarrow12+2a+bc+2b+ac+2c+ab+6\left(a+b+c\right)\ge6\left(a+b+c+\sqrt{2abc}\right)+12\)

\(\Rightarrow2\sqrt{6}S\ge6\left(a+b+c+\sqrt{2abc}\right)+12\)

Theo đề bài ta có \(a+b+c+\sqrt{2abc}\ge10\)

\(\Rightarrow6\left(a+b+c+\sqrt{2abc}\right)+12\ge72\)

\(\Rightarrow S\ge\dfrac{72}{2\sqrt{6}}=6\sqrt{6}\) ( đpcm )

Dấu " = " xảy ra khi \(a=b=c=2\)

28 tháng 6 2021

hmmm-khó đấy

 

NV
28 tháng 6 2021

Đề bài hình như bị sai em, thay điểm rơi ko thỏa mãn

Biểu thức là \(a+b+\sqrt{2\left(a+c\right)}\) mới đúng

25 tháng 2 2022

Ta có : \(9=a^2+a^2+b^2+a^2+b^2+bc+bc+c^2+c^2\ge9\sqrt[9]{a^6\cdot b^6\cdot c^6}=9\sqrt[3]{a^2\cdot b^2\cdot c^2}\Rightarrow abc\le1\) Áp dụng bđt Cô-si vào các số dương : \(a^2+\dfrac{1}{b^2}+\dfrac{1}{b^2}+\dfrac{1}{b^2}\ge4\sqrt[4]{\dfrac{a^2}{b^6}}=4\sqrt{\dfrac{a}{b^3}}\Rightarrow\sqrt{a^2+\dfrac{3}{b^2}}\ge2\cdot\sqrt[4]{\dfrac{a}{b^3}}\)  

CM tương tự ta được: \(\sqrt{b^2+\dfrac{3}{c^2}}\ge2\sqrt[4]{\dfrac{b}{c^3}};\sqrt{c^2+\dfrac{3}{a^2}}\ge2\sqrt[4]{\dfrac{c}{a^3}}\Rightarrow P\ge2\cdot\left(\sqrt[4]{\dfrac{a}{b^3}}+\sqrt[4]{\dfrac{b}{c^3}}+\sqrt[4]{\dfrac{c}{a^3}}\right)\ge2\cdot3\cdot\sqrt[12]{\dfrac{a}{b^3}\cdot\dfrac{b}{c^3}\cdot\dfrac{c}{a^3}}=6\sqrt[12]{\dfrac{1}{\left(abc\right)^2}}=6\) Dấu = xảy ra \(\Leftrightarrow a=b=c=1\)

25 tháng 2 2022

Em cám ơn thầy đã giúp đỡ ạ!