K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2015

đề bài này phải là \(\frac{a}{b^3-1}+\frac{b}{a^3-1}=\frac{2\left(ab-2\right)}{a^2b^2+3}\)

từ a+b=1=>a-1=b, b-1=a

\(\frac{a}{b^3-1}+\frac{b}{a^3-1}=\frac{a}{\left(b-1\right)\left(b^2+b+1\right)}+\frac{b}{\left(a-1\right)\left(a^2+a+1\right)}\)

\(=\frac{a}{-a\left(b^2+b+1\right)}+\frac{b}{-b\left(a^2+a+1\right)}\)\(=\frac{-1}{b^2+b+1}-\frac{b}{a^2+a+1}\)\(=-\frac{\left(a^2+a+1\right)+\left(b^2+b+1\right)}{\left(a^2+a+1\right)\left(b^2+b+1\right)}=\frac{a^2+b^2+a+b+2}{\left(a^2+a+1\right)\left(b^2+b+1\right)}\)\(=\frac{\left(\left(a+b\right)^2-2ab\right)+\left(a+b\right)+2}{\left(a^2+a+1\right)\left(b^2+b+1\right)}=-\frac{1-2ab+1+2}{a^2b^2+ab\left(a+b\right)+a^2+b^2+ab+2}=-\frac{4-2ab}{a^2b^2+\left(a+b\right)^2+2}\)\(=\frac{2\left(ab-2\right)}{a^2b^2+3}\)

2 tháng 12 2020

Đặt \(\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)=\left(x,y,z\right)\)

\(x+y+z\ge\frac{x^2+2xy}{2x+y}+\frac{y^2+2yz}{2y+z}+\frac{z^2+2zx}{2z+x}\)

\(\Leftrightarrow x+y+z\ge\frac{3xy}{2x+y}+\frac{3yz}{2y+z}+\frac{3zx}{2z+x}\)

\(\frac{3xy}{2x+y}\le\frac{3}{9}xy\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{3}\left(x+2y\right)\)

\(\Rightarrow\Sigma_{cyc}\frac{3xy}{2x+y}\le\frac{1}{3}\left[\left(x+2y\right)+\left(y+2z\right)+\left(z+2x\right)\right]=x+y+z\)

Dấu "=" xảy ra khi x=y=z

18 tháng 12 2018

Trời ! Sao trên đời này có nhiều đứa ngu quá vậy ?

18 tháng 12 2018

Trời ! Sao trên đời này có nhiều người chảnh quá vậy ?

9 tháng 7 2017

Lần sau đăng ít 1 thôi đăng nhiều ngại làm, bn đăng nhiều nên tui hướng dẫn sơ qua thôi tự làm đầy đủ vào vở

Bài 1:

Áp dụng BĐT AM-GM ta có:

\(a^4+b^4\ge2a^2b^2;b^4+c^4\ge2b^2c^2;c^4+a^4\ge2c^2a^2\)

Cộng theo vế 3 BĐT trên rồi thu gọn

\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)

Áp dụng tiếp BĐT AM-GM

\(a^2b^2+b^2c^2=b^2\left(a^2+c^2\right)\ge2b^2ac\)

Tương tự rồi cộng theo vế có ĐPCM

Bài 2:

Quy đồng  BĐT trên ta có:

\(\frac{a^2}{b^2}+\frac{b^2}{a^2}-\frac{a}{b}-\frac{b}{a}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2\left(a^2+ab+b^2\right)}{a^2b^2}\ge0\) (luôn đúng)

Bài 4: Áp dụng BĐT AM-GM 

\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)

\(\Rightarrow\frac{a^3+b^3}{ab}\ge\frac{ab\left(a+b\right)}{ab}=a+b\)

Tương tự rồi cộng theo vế

Bài 5: sai đề tự nhien có dấu - :v nghĩ là +

9 tháng 7 2017

ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]

 
22 tháng 8 2017

Ta có:

\(\frac{1}{\left(2a+b+c\right)^2}+\frac{1}{\left(a+2b+c\right)^2}+\frac{1}{\left(a+b+2c\right)^2}\)

\(\le\frac{1}{4\left(a+b\right)\left(a+c\right)}+\frac{1}{4\left(b+a\right)\left(b+c\right)}+\frac{1}{4\left(c+a\right)\left(c+b\right)}\)

\(=\frac{2\left(a+b+c\right)}{4\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(=\frac{a+b+c}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Giờ ta cần chứng minh

\(\frac{a+b+c}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{9}{16\left(ab+bc+ca\right)}\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)

Ta có:

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-3abc\)

\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{1}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)

\(=\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)

Vậy ta có ĐPCM

12 tháng 6 2017

Cố gắng hơn nữa ah. Thế vô là thấy nó sai liền nên m không giải nữa.

12 tháng 6 2017

Thay \(\hept{\begin{cases}a=2\\b=2\end{cases}}\) thì ta có:

\(\left(\sqrt[3]{2^4}+2^2.\sqrt[3]{2^2}+2^4\right).\frac{\left(\sqrt[3]{2^8}-2^6+2^4.\sqrt[3]{2^2}-2^2.2^2\right)}{2^2.2^2+2^2-2^8.2^2-2^4}=2^2.2^2\)

\(\Leftrightarrow1,477=16\left(sai\right)\)

Vậy đề bài cho tào lao.

1 tháng 8 2020

Xét \(\frac{a^3}{a^2+ab+b^2}-\frac{b^3}{a^2+ab+b^2}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=a-b\)

Tương tự, ta được: \(\frac{b^3}{b^2+bc+c^2}-\frac{c^3}{b^2+bc+c^2}=b-c\)\(\frac{c^3}{c^2+ca+a^2}-\frac{a^3}{c^2+ca+a^2}=c-a\)

Cộng theo vế của 3 đẳng thức trên, ta được: \(\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\)\(-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\right)=0\)

\(\Rightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\)\(=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)

Ta đi chứng minh BĐT phụ sau: \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\)(*)

Thật vậy: (*)\(\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\ge0\)*đúng*

\(\Rightarrow2LHS=\Sigma_{cyc}\frac{a^3+b^3}{a^2+ab+b^2}=\Sigma_{cyc}\text{ }\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\)\(\ge\Sigma_{cyc}\text{ }\frac{\frac{1}{3}\left(a+b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=\frac{1}{3}\text{​​}\Sigma_{cyc}\left[\left(a+b\right)\right]=\frac{2\left(a+b+c\right)}{3}\)

\(\Rightarrow LHS\ge\frac{a+b+c}{3}=RHS\)(Q.E.D)

Đẳng thức xảy ra khi a = b = c

P/S: Có thể dùng BĐT phụ ở câu 3a để chứng minhxD:

27 tháng 7 2020

1) ta chứng minh được \(\Sigma\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}=\Sigma\frac{b^4}{\left(a+b\right)\left(a^2+b^2\right)}\)

\(VT=\frac{1}{2}\Sigma\frac{a^4+b^4}{\left(a+b\right)\left(a^2+b^2\right)}\ge\frac{1}{4}\Sigma\frac{a^2+b^2}{a+b}\ge\frac{1}{8}\Sigma\left(a+b\right)=\frac{a+b+c+d}{4}\)

bài 2 xem có ghi nhầm ko

(

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhh

hhhhhhhhhhhhh