K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2021

Ta có: \(a^4+b^4\ge2a^2b^2\)

\(\Leftrightarrow2\left(a^4+b^4\right)\ge\left(a^2+b^2\right)^2\left(\frac{1}{2}\right)^2\)

\(\Rightarrow a^4+b^4\ge\frac{1}{8}\left(đpcm\right)\)

5 tháng 7 2021

bạn quỳnh làm như nào mình không hiểu , bạn chỉ cho mình dòng thứ 2 đc không ?

Áp dụng liên tiếp BĐT \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)ta có :

\(VT\ge\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{2}=\frac{\frac{1}{4}}{2}=\frac{1}{8}\)

Dấu "=" xảy ra \(< =>a=b=\frac{1}{2}\)

nếu dương thì dùng cô si 4 số để hạ bậc cũng được 

AH
Akai Haruma
Giáo viên
27 tháng 5 2019

Lời giải:

Từ \(4(a+b+c)=3abc\Rightarrow \frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=\frac{3}{4}\)

Áp dụng BĐT AM-GM cho các số dương ta có:

\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{8}\geq 3\sqrt[3]{\frac{1}{a^3}.\frac{1}{b^3}.\frac{1}{8}}=\frac{3}{2}.\frac{1}{ab}\)

\(\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{8}\geq \frac{3}{2}.\frac{1}{bc}\)

\(\frac{1}{c^3}+\frac{1}{a^3}+\frac{1}{8}\geq \frac{3}{2}.\frac{1}{ac}\)

Cộng theo vế các BĐT vừa thu được:

\(2\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\geq \frac{3}{2}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)-\frac{3}{8}=\frac{3}{2}.\frac{3}{4}-\frac{3}{8}=\frac{3}{4}\)

\(\Rightarrow \frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\geq \frac{3}{8}\) (đpcm)

Dấu "=" xảy ra khi $a=b=c=2$

NV
15 tháng 3 2020

Sử dụng BĐT quen thuộc: \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\) với \(xy\ge1\)

\(2VT\ge\frac{2}{1+a^2b^2}+\frac{2}{1+b^2c^2}+\frac{2}{1+c^2a^2}\)

\(\Rightarrow VT\ge\frac{1}{1+a^2b^2}+\frac{1}{1+b^2c^2}+\frac{1}{1+c^2a^2}\)

\(\Rightarrow2VT\ge\frac{1}{1+a^2b^2}+\frac{1}{1+b^4}+\frac{1}{1+b^2c^2}+\frac{1}{1+c^4}\frac{1}{1+c^2a^2}+\frac{1}{1+a^4}\)

\(\Rightarrow2VT\ge\frac{2}{1+ab^3}+\frac{2}{1+bc^3}+\frac{2}{1+ca^3}\)

\(\Rightarrow VT\ge\frac{1}{1+ab^3}+\frac{1}{1+bc^3}+\frac{1}{1+ca^3}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

15 tháng 6 2017

\(x,y,z\ge1\)nên ta có bổ đề: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{ab+1}\)

ÁP dụng: \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}+\frac{1}{1+\sqrt[3]{xyz}}\ge\frac{2}{1+\sqrt{xy}}+\frac{2}{1+\sqrt{\sqrt[3]{xyz^4}}}\)

\(\ge\frac{4}{1+\sqrt[4]{\sqrt[3]{x^4y^4z^4}}}=\frac{4}{1+\sqrt[3]{xyz}}\)

\(\Rightarrow\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{1+\sqrt[3]{xyz}}\)

Dấu = xảy ra \(x=y=z\)hoặc x=y,xz=1 và các hoán vị 

15 tháng 6 2017

trc giờ mấy bài này tui toàn quy đồng thôi, may có cách này =))

8 tháng 1 2020

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\)

\(=abc+a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+abc+abc\)

\(=\left(a+b+c\right)\left(ab+bc+ca\right)\)( phân tích nhân tử các kiểu )

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(a+b+c\right)\left(ab+bc+ca\right)-abc\left(1\right)\)

\(a+b+c\ge3\sqrt[3]{abc};ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)

\(\Rightarrow-abc\ge\frac{-\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)

Khi đó:\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)

\(=\frac{8\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\left(2\right)\)

Từ ( 1 ) và ( 2 ) có đpcm

NV
11 tháng 2 2020

\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\Leftrightarrow\frac{2+a^2+b^2}{\left(1+a^2+b^2+a^2b^2\right)}\ge\frac{2}{1+ab}\)

\(\Leftrightarrow\left(1+ab\right)\left(2+a^2+b^2\right)\ge2a^2b^2+2a^2+2b^2+2\)

\(\Leftrightarrow ab\left(a^2+b^2-2ab\right)-\left(a^2+b^2-2ab\right)\ge0\)

\(\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2\ge0\)

b/ \(\frac{1}{1+a^4}+\frac{1}{1+b^4}+\frac{2}{1+b^4}\ge\frac{2}{1+a^2b^2}+\frac{2}{1+b^4}\ge\frac{4}{1+ab^3}\)

\(\Rightarrow\frac{1}{1+a^4}+\frac{3}{1+b^4}\ge\frac{4}{1+ab^3}\)

Hoàn toàn tương tự: \(\frac{1}{1+b^4}+\frac{3}{1+c^4}\ge\frac{4}{1+bc^3}\); \(\frac{1}{1+c^4}+\frac{3}{1+a^4}\ge\frac{4}{1+a^3c}\)

Cộng vế với vế ta có đpcm

19 tháng 2 2017

Áp dụng BĐT AM-GM ta có:

\(Gt\Rightarrow a+b+c=1\Rightarrow3\sqrt[3]{abc}\ge1\)

\(\Rightarrow\sqrt[3]{abc}\ge\frac{1}{3}\Rightarrow abc\ge\frac{1}{27}\)

Tiếp tục áp dụng BĐT AM-GM ta có:

\(\left\{\begin{matrix}a^4+b^4\ge2\sqrt{a^4b^4}=2a^2b^2\\b^4+c^4\ge2b^2c^2\\c^4+a^4\ge2c^2a^2\end{matrix}\right.\)

Cộng theo vế rồi thu gọn ta có:

\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\left(1\right)\)

Sử dụng AM-GM lần nữa:

\(\left\{\begin{matrix}a^2b^2+b^2c^2=b^2\left(a^2+c^2\right)\ge2b^2\sqrt{a^2c^2}=2ab^2c\\b^2c^2+c^2a^2\ge2abc^2\\c^2a^2+a^2b^2\ge2a^2bc\end{matrix}\right.\)

Cộng theo vế rồi rút gọn ta có:

\(a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\ge\frac{1}{27}\)\(\left(\left\{\begin{matrix}a+b+c=1\\abc\ge\frac{1}{27}\end{matrix}\right.\right)\left(2\right)\)

Từ (1) và (2) ta có được ĐPCM

20 tháng 2 2017

Áp dụng bđt a2 + b2 + c2 \(\ge\) ab + bc + ca ta co:

3(a2 + b2 + c2) \(\ge\) a2 + b2 + c2 + 2(ab + bc + ca) = (a + b + c)2 = 1

<=> \(a^2+b^2+c^2\ge\frac{1}{3}\)

Áp dụng bđt Cauchy-Schwarz dạng Engel ta có:

\(a^4+b^4+c^4\ge\frac{\left(a^2+b^2+c^2\right)^2}{1+1+1}\ge\frac{\left(\frac{1}{3}\right)^2}{3}=\frac{1}{27}\)

Dấu "=" xảy ra khi a = b = c

NV
15 tháng 7 2020

a/ \(\Leftrightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow x^2+y^2-2xy\ge0\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)

Vậy BĐT đã cho đúng

b/ \(\frac{a}{a+b^2}=\frac{a}{a\left(a+b+c\right)+b^2}=\frac{a}{a^2+b^2+a\left(b+c\right)}\le\frac{a}{2ab+a\left(b+c\right)}=\frac{1}{b+b+b+c}\)

\(\Rightarrow\frac{a}{a+b^2}=\frac{1}{b+b+b+c}\le\frac{1}{16}\left(\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{16}\left(\frac{3}{b}+\frac{1}{c}\right)\)

Tương tự: \(\frac{b}{b+c^2}\le\frac{1}{16}\left(\frac{3}{c}+\frac{1}{a}\right)\) ; \(\frac{c}{c+a^2}\le\frac{1}{16}\left(\frac{3}{a}+\frac{1}{c}\right)\)

Cộng vế với vế:

\(VT\le\frac{1}{16}\left(\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\right)=\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

22 tháng 1 2018

Có : (a-b)^2 >= 0 

<=> a^2-2ab+b^2 >= 0

<=> a^2-2ab+b^2+4ab >= 4ab

<=. (a+b)^2 >= 4ab

Với a,b > 0 thì chia cả hai vế cho ab.(a+b) được :

a+b/ab >= 4/a+b

<=> 1/a + 1/b >= 4/a+b

=> ĐPCM

Dấu "=" xảy ra <=> a=b>0

Tk mk nha