K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2017

Áp dụng bđt AM - GM ta có :

\(\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{a^2}}\ge\sqrt{2\frac{a^2}{b^2}}+\sqrt{2\frac{b^2}{a^2}}=\sqrt{2}\frac{a}{b}+\sqrt{2}\frac{b}{a}\)

\(=\sqrt{2}\left(\frac{a}{b}+\frac{b}{a}\right)\ge\sqrt{2}.2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\sqrt{2}\)

7 tháng 4 2020

Có \(a+\frac{1}{b\left(a-b\right)^2}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)^2}=\frac{a-b}{2}+\frac{a-b}{2}+b+\frac{1}{b\left(a-b\right)^2}\)

Áp dụng BĐT Cosi cho 4 số ta có:

\(\frac{a-b}{2}+\frac{a-b}{2}+b+\frac{1}{b\left(a-b\right)^2}\ge4\sqrt[4]{\frac{a-b}{2}\cdot\frac{a-b}{2}\cdot b\cdot\frac{1}{b\left(a-b\right)^2}}\)

\(=4\cdot\sqrt[4]{\frac{1}{4}}=1\cdot\frac{\sqrt{1}}{2}=2\sqrt{2}\)

\(\Rightarrow a+\frac{1}{b\left(a-b\right)^2}\ge2\sqrt{2}\)

Dấu "=" xảy ra khi \(\frac{a-b}{2}=b\)

\(\Leftrightarrow\frac{a}{2}=\frac{3b}{2}\Leftrightarrow a=3b\)

Cách giải: Linh Vy. Trình bày: Nhật Quỳnh

AH
Akai Haruma
Giáo viên
30 tháng 3 2020

Lời giải:

BĐT cần chứng minh tương đương với:

\(\frac{1}{a}+\frac{1}{b}-\left(\frac{a}{b}+\frac{b}{a}-2\right)\geq 2\sqrt{2}\)

\(\Leftrightarrow \frac{a+b}{ab}-\frac{a^2+b^2}{ab}\geq 2\sqrt{2}-2\)

\(\Leftrightarrow \frac{a+b-1}{ab}\geq 2\sqrt{2}-2\)

\(\Leftrightarrow \frac{\sqrt{2ab+1}-1}{ab}\geq 2\sqrt{2}-2\)

\(\Leftrightarrow \frac{2ab}{ab(\sqrt{2ab+1}+1}\geq 2\sqrt{2}-2\)

\(\Leftrightarrow \frac{1}{\sqrt{2ab+1}+1}\geq \sqrt{2}-1\)

\(\Leftrightarrow \sqrt{2ab+1}+1\leq \sqrt{2}+1\)

\(\Leftrightarrow ab\leq \frac{1}{2}\leftrightarrow 2ab\leq 1\Leftrightarrow 2ab\leq a^2+b^2\) (luôn đúng theo AM-GM)

Do đó ta có đpcm.

AH
Akai Haruma
Giáo viên
30 tháng 3 2020

Lời giải:

BĐT cần chứng minh tương đương với:

\(\frac{1}{a}+\frac{1}{b}-\left(\frac{a}{b}+\frac{b}{a}-2\right)\geq 2\sqrt{2}\)

\(\Leftrightarrow \frac{a+b}{ab}-\frac{a^2+b^2}{ab}\geq 2\sqrt{2}-2\)

\(\Leftrightarrow \frac{a+b-1}{ab}\geq 2\sqrt{2}-2\)

\(\Leftrightarrow \frac{\sqrt{2ab+1}-1}{ab}\geq 2\sqrt{2}-2\)

\(\Leftrightarrow \frac{2ab}{ab(\sqrt{2ab+1}+1}\geq 2\sqrt{2}-2\)

\(\Leftrightarrow \frac{1}{\sqrt{2ab+1}+1}\geq \sqrt{2}-1\)

\(\Leftrightarrow \sqrt{2ab+1}+1\leq \sqrt{2}+1\)

\(\Leftrightarrow ab\leq \frac{1}{2}\leftrightarrow 2ab\leq 1\Leftrightarrow 2ab\leq a^2+b^2\) (luôn đúng theo AM-GM)

Do đó ta có đpcm.

7 tháng 8 2020

CM cái sau: 

Ta có: \(a+\frac{1}{a}=\frac{a}{1}+\frac{1}{a}\ge2\sqrt{\frac{a}{1}.\frac{1}{a}}=2.1=2\) (bất đẳng thức Cauchy)

Chứng minh: 

\(\left(a-b\right)^2\ge0\left(\forall a,b\right)\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a+b\ge2\sqrt{ab}\)

(áp dụng vào cái trên)

7 tháng 8 2020

Dấu "=" xảy ra khi:

\(a=\frac{1}{a}\Leftrightarrow a^2=1\Rightarrow a=1\left(a>0\right)\)

9 tháng 8 2019

\(VT=\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}\ge\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}=\sqrt{a}+\sqrt{b}\)

Dấu "=" xảy ra khi a=b 

9 tháng 8 2019

Ta có:\(\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}=\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}=\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}\) (1)

Mặt khác:  \(\sqrt{a}+\sqrt{b}=\frac{\sqrt{a}+\sqrt{b}}{\sqrt{ab}}\) (2)

Từ (1) và (2) \(\Rightarrow\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}\ge\sqrt{a}+\sqrt{b}\left(đpcm\right)\)

30 tháng 9 2019

Ta luôn có :

\(\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{b}}\right)^2\ge0\forall a,b\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}}\)

\(\Leftrightarrow2\left(\frac{1}{a}+\frac{1}{b}\right)\ge\frac{2}{\sqrt{ab}}+\frac{1}{a}+\frac{1}{b}\)

\(\Leftrightarrow\frac{2\left(a+b\right)}{ab}\ge\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}\right)^2\)

\(\Leftrightarrow\sqrt{\frac{2\left(a+b\right)}{ab}}\ge\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế :

\(\sqrt{2}\left(\sqrt{\frac{a+b}{ab}}+\sqrt{\frac{b+c}{bc}}+\sqrt{\frac{a+c}{ac}}\right)\)

\(\ge2\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)\)

\(\Leftrightarrow\sqrt{\frac{a+b}{ab}}+\sqrt{\frac{b+c}{bc}}+\sqrt{\frac{a+c}{ac}}\ge\sqrt{\frac{2}{a}}+\sqrt{\frac{2}{b}}+\sqrt{\frac{2}{c}}\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c\)

Chúc bạn học tốt !!!

30 tháng 9 2019

Đặt \(\frac{1}{\sqrt{a}}=x,\frac{1}{\sqrt{b}}=y,\frac{1}{\sqrt{c}}\)=z

Thay vào ta có:\(\sqrt{2}\)(x+y+x)\(\le\)\(\sqrt{\left(x^2+y^2\right)}+\sqrt{x^2+z^2}+\sqrt{\left(y^2+z^2\right)}\)

Ta có bất đẳng thức sau A: (m2+n2)(p2+q2)\(\ge\)(mp+nq)2 dễ dàng chứng mình bằng cách khai triển

áp dụng bdt A với m=x,n=z,p=\(\sqrt{2}\).q=\(\sqrt{2}\) ta được

 \(\sqrt{\frac{\left(x^2+z^2\right)\left(\sqrt{2}^2+\sqrt{2}^2\right)}{4}}\ge\sqrt{\left(x\sqrt{2}+z\sqrt{2}\right)^2}\)/2=\(\frac{\sqrt{2}\left(x+y\right)}{2}\)

Tương tự với cái phần tử còn lại ta được điều cần cm

6 tháng 7 2016

Trả lời hộ mình đi

4 tháng 7 2017

a/ \(\frac{b}{b}.\sqrt{\frac{a^2+b^2}{2}}+\frac{c}{c}.\sqrt{\frac{b^2+c^2}{2}}+\frac{a}{a}.\sqrt{\frac{c^2+a^2}{2}}\)

\(\le\frac{1}{b}.\left(\frac{3b^2+a^2}{4}\right)+\frac{1}{c}.\left(\frac{3c^2+b^2}{4}\right)+\frac{1}{a}.\left(\frac{3a^2+c^2}{4}\right)\)

\(=\frac{1}{4}.\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\frac{3}{4}.\left(a+b+c\right)\)

Ta cần chứng minh

\(\frac{1}{4}.\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\frac{3}{4}.\left(a+b+c\right)\le\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)

\(\Leftrightarrow\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)\ge\left(a+b+c\right)\)

Mà: \(\Leftrightarrow\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)\ge\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)

Vậy có ĐPCM.

Câu b làm y chang.

2 tháng 7 2017

hình như sai đề