K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2021

Chứng minh rằng: \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=a^3+b^3+c^3-3abc\)

\(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3=a^3+3ab\left(a+b\right)+b^3\)

\(\Rightarrow a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\) (1)

Thay (1) vào ta được

\(\left(a^3+b^3+c^3\right)-3ab=\left(a^3+b^3\right)+c^3-3ab\)

\(=\left(a^3+b^3\right)+c^3-3abc\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

NV
28 tháng 1 2021

\(P=\dfrac{a^2}{ab+\dfrac{1}{b}}+\dfrac{b^2}{bc+\dfrac{1}{c}}+\dfrac{c^2}{ca+\dfrac{1}{a}}\ge\dfrac{\left(a+b+c\right)^2}{ab+bc+ca+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}}\)

\(P\ge\dfrac{3\left(ab+bc+ca\right)}{ab+bc+ca+\dfrac{ab+bc+ca}{abc}}=\dfrac{3}{1+\dfrac{1}{abc}}=\dfrac{3abc}{1+abc}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

27 tháng 1 2021

Với a, b, c > 0 có:

\(P=\dfrac{a}{b+2c}+\dfrac{b}{c+2a}+\dfrac{c}{a+2b}\\ =\dfrac{a^2}{a\left(b+2c\right)}+\dfrac{b^2}{b\left(c+2a\right)}+\dfrac{c^2}{c\left(a+2b\right)}\)

\(\Rightarrow P\ge\dfrac{\left(a+b+c\right)^2}{\left(1+\alpha\right)\left(ab+bc+ca\right)}\ge\dfrac{3\left(ab+bc+ca\right)}{\left(1+\alpha\right)\left(ab+bc+ca\right)}\)

chọn \(\alpha=\dfrac{1}{abc}\Rightarrow dpcm\) 

a+b+c=0

=>(a+b+c)3=0

=>a3+b3+c3+3a2b+3ab2+3b2c+3bc2+3a2c+3ac2+6abc=0

=>a3+b3+c3+(3a2b+3ab2+3abc)+(3b2c+3bc2+3abc)+(3a2c+3ac2+3abc)-3abc=0

=>a3+b3+c3+3ab(a+b+c)+3bc(a+b+c)+3ac(a+b+c)=3abc

Do a+b+c=0

=>a3+b3+c3=3abc(ĐPCM)

15 tháng 1 2019

\(ab+bc+ca=3abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)

Đặt \(\dfrac{1}{a}=x;\dfrac{1}{b}=y;\dfrac{1}{c}=z\)\(\Rightarrow x+y+z=3\)

\(VT=\sum\dfrac{xyz}{yz+x^2}\le\sum\dfrac{xyz}{2x\sqrt{yz}}=\dfrac{1}{2}\sum\sqrt{yz}\le\dfrac{1}{2}\sum x=\dfrac{3}{2}\)

29 tháng 10 2020

VT=\(\frac{a^2}{ab+\frac{1}{b}}+\frac{b^2}{bc+\frac{1}{c}}+\frac{c^2}{ca+\frac{1}{a}}\)

áp dụng bđt cộng mẫu đc VT \(\ge\frac{\left(a+b+c\right)^2}{ab+bc+ca+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}=\frac{\left(a+b+c\right)^2}{ab+bc+ca+\frac{ab+bc+ca}{abc}}\left(1\right)\)

Ta có  \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\forall a,b,c\)

Nên \(\left(1\right)\ge\frac{\left(a+b+c\right)^2}{\frac{\left(a+b+c\right)^2}{3}+\frac{\left(a+b+c\right)^2}{3abc}}=\frac{1}{\frac{1}{3}+\frac{1}{3abc}}=\frac{3abc}{1+abc}\left(đccm\right)\)

dấu bằng xảy ra <> a=b=c

3 tháng 7 2015

\(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc=\left(a+b+c\right)^3\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc+c^2\right)-3ab\left(a+b+c\right)=\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

20 tháng 6 2018

Nhưng theo mình thấy a^3+b^3+c^3 không thể đổi thành (a+b+c)^3

7 tháng 6 2016

\(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc\)

\(=\left(a+b+c\right)^3\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

7 tháng 6 2016

A = a3 + b3 +c3 -3abc thành nhân tử.

Lời giải:

Từ (a+b)3= a3 + 3a2b +3ab2 + b3

= a3 + b3 + 3ab (a+b)

Ta suy ra: a3 + b3 = (a+b)3 - 3ab (a+b) (1)

áp dụng hằng đẳng thức (1) vào giải bài toán ta có:

A = (a3 + b3) + c3 - 3abc

= (a+b)3 - 3ab (a+b) + c3 - 3abc

= (a+b)3 + c3 - 3ab (a+b) - 3abc

 = (a+b+c) (a2 +2ab + b2 -ac - bc + c2 - 3ab)

= (a+b+c) (a2+ b2 +c2 -ab - bc - ac) (*)