K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2017

Áp dụng bất đẳng thức Cauchy - Schwarz dưới dạng Engel ta có :

\(x^4+y^4\ge\frac{\left(x^2+y^2\right)^2}{2}\ge\frac{\left[\frac{\left(x+y\right)^2}{2}\right]^2}{2}=\frac{\left(\frac{1}{2}\right)^2}{2}=\frac{1}{8}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

4 tháng 8 2017

Mình không hiểu. Bất đẳng thức này mình chưa học

19 tháng 3 2020

Ta có: \(x^4+y^4\ge\frac{\left(x^2+y^2\right)^2}{2}\ge\frac{\left(x+y\right)^4}{8}=\frac{1}{8}\)

Dấu "=" khi \(x=y=\frac{1}{2}\)

9 tháng 9 2019

Với mọi x,y >0 có \(\left(x+y\right)^2\ge4xy\)

=> \(1\ge4xy\) (do x+y=1) <=> \(\frac{1}{xy}\ge4\)

​Lại có \(x^2+y^2\ge2xy\)

<=> \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2=1\)

<=> \(x^2+y^2\ge\frac{1}{2}\)

\(x^4+y^4\ge2x^2y^2\)

<=> \(2\left(x^4+y^4\right)\ge\left(x^2+y^2\right)^2\ge\left(\frac{1}{2}\right)^2\)

<=> \(8\left(x^4+y^4\right)\ge\frac{1}{4}.4=1\)

=> \(8\left(x^4+y^4\right)+\frac{1}{xy}\ge1+4=5\)

Dấu "=" xảy ra <=> x=y=\(\frac{1}{2}\)

\(2\left(x^2+y^2\right)\ge\left(x+y\right)^2=1\)

9 tháng 9 2019

Cho mik hỏi sao \(\left(x^2+y^2\right)^2\)\(\left(\frac{1}{2}\right)^2\) vậy bạn

25 tháng 12 2019

Ta có: \(\left(x-y\right)^2\ge0\)

\(\Rightarrow x^2-2xy+y^2\ge0\)

\(\Rightarrow x^2+2xy+y^2\ge4xy\)

\(\Rightarrow\left(x+y\right)^2\ge4xy\)

\(\Rightarrow\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}\)(đpcm)

25 tháng 12 2019

Ta có vì : x,y > 0

và \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

Từ đề bài ta có:

\(\Leftrightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\)

\(\Leftrightarrow\frac{x+y}{xy}.\left(x+y\right).xy\ge\frac{4}{x+y}.xy\left(x+y\right)\)

Áp dụng đẳng thức Cô-si:

\(\Leftrightarrow x^2+2xy+y^2\ge4xy\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)

Vậy....

đpcm.

15 tháng 6 2017

\(x,y,z\ge1\)nên ta có bổ đề: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{ab+1}\)

ÁP dụng: \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}+\frac{1}{1+\sqrt[3]{xyz}}\ge\frac{2}{1+\sqrt{xy}}+\frac{2}{1+\sqrt{\sqrt[3]{xyz^4}}}\)

\(\ge\frac{4}{1+\sqrt[4]{\sqrt[3]{x^4y^4z^4}}}=\frac{4}{1+\sqrt[3]{xyz}}\)

\(\Rightarrow\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{1+\sqrt[3]{xyz}}\)

Dấu = xảy ra \(x=y=z\)hoặc x=y,xz=1 và các hoán vị 

15 tháng 6 2017

trc giờ mấy bài này tui toàn quy đồng thôi, may có cách này =))

10 tháng 3 2020

c1: phân tích từng cái

c2, nhân x cho (1) y cho 2

sau đs dùng bunhia 

từ x+y=1

=> x^2-xy+y^2...

11 tháng 3 2020

\(VT-VP=\frac{\left(3x^2+7xy+3y^2\right)\left(x-y\right)^2}{3\left(1-x^2\right)\left(1-y^2\right)}\ge0\)

ta có (x-y)^2>=0

=>x^2+y^2>=2xy

=>x^2+2xy+y^2>=4xy

(x+y)^2>=4xy

(x+y)/xy>=4/(x+y)

1/x+1/y>=4/(x+y)