K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2016

Ta có : \(\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}\right)-\left(\frac{a}{b}+\frac{b}{c}\right)=\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}\right)-2\left(\frac{a}{b}+\frac{b}{c}\right)+\left(\frac{a}{b}+\frac{b}{c}\right)\ge\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}\right)-2\left(\frac{a}{b}+\frac{b}{c}\right)+2\)Cần chứng minh \(\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}\right)-2\left(\frac{a}{b}+\frac{b}{c}\right)+2\ge0\). Điều này tương đương với : 

\(\left(\frac{a}{b}-1\right)^2+\left(\frac{b}{c}-1\right)^2\ge0\) (luôn đúng)

Làm tương tự với các lần tách còn lại 

16 tháng 8 2016

\(\frac{bc}{a}+\frac{ac}{b}=c\left(\frac{a}{b}+\frac{b}{c}\right)\ge2c\)

Tương tự .... 

5 tháng 12 2015

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{2\sqrt[3]{abc}}=\frac{c^2}{c^2\left(a+b\right)}+\frac{a^2}{a^2\left(b+c\right)}+\frac{b^2}{b^2\left(c+a\right)}+\frac{\left(\sqrt[3]{abc}\right)^2}{2abc}\)

Áp dụng BĐT Bun :

\(\frac{c^2}{c^2\left(a+b\right)}+\frac{a^2}{a^2\left(b+c\right)}+\frac{b^2}{b^2\left(a+c\right)}+\frac{\left(\sqrt[3]{abc}\right)^2}{2abc}\ge\frac{\left(a+b+c+\sqrt[3]{abc}\right)^2}{c^2\left(a+b\right)+a^2\left(b+c\right)+b^2\left(a+c\right)+2abc}=...\)

Dấu ''='' xảy ra khi a = b =c 

29 tháng 3 2022

Áp dụng BĐT Svácxơ, ta có:

\(\dfrac{a^2}{b+1}+\dfrac{b^2}{c+1}+\dfrac{c^2}{a+1}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+3}=\dfrac{81}{12}=\dfrac{27}{4}\)

Dấu "=" ⇔ a=b=c=3

NV
29 tháng 3 2022

Áp dụng BĐT Cô-si:

\(\dfrac{a^2}{b+1}+\dfrac{9}{16}\left(b+1\right)\ge2\sqrt{\dfrac{9a^2\left(b+1\right)}{16\left(b+1\right)}}=\dfrac{3a}{2}\) 

Tương tự: \(\dfrac{b^2}{c+1}+\dfrac{9}{16}\left(c+1\right)\ge\dfrac{3b}{2}\) ; \(\dfrac{c^2}{a+1}+\dfrac{9}{16}\left(a+1\right)\ge\dfrac{3c}{2}\)

Cộng vế:

\(VT+\dfrac{9}{16}\left(a+b+c+3\right)\ge\dfrac{3}{2}\left(a+b+c\right)\)

\(\Leftrightarrow VT+\dfrac{27}{4}\ge\dfrac{27}{2}\Rightarrow VT\ge\dfrac{27}{4}\)

Dấu "=" xảy ra khi \(a=b=c=3\)

NV
29 tháng 2 2020

\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2b^2}{b^2c^2}}\ge\frac{2a}{c}\) ; \(\frac{a^2}{b^2}+\frac{c^2}{a^2}\ge\frac{2c}{b}\) ; \(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{2b}{a}\)

Cộng vế với vế ta có đpcm

Dấu "=" xảy ra khi \(a=b=c\)

2. \(\frac{bc}{a}+\frac{ac}{b}\ge2\sqrt{\frac{bc.ac}{ab}}=2c\) ; \(\frac{ac}{b}+\frac{ab}{c}\ge2a\) ; \(\frac{bc}{a}+\frac{ab}{c}\ge2b\)

Cộng vế với vế ta có đpcm

Dấu "=" xảy ra khi \(a=b=c\)

11 tháng 3 2018

Áp dụng BĐT \(x^2+y^2\ge2xy\) ( với a,b,c>0) ta có:

\(\frac{a^3}{b+c}+\frac{a\left(b+c\right)}{4}=\frac{a^4}{a\left(b+c\right)}+\frac{a\left(b+c\right)}{4}\ge a^2\)           (1)

CMTT ta được

\(\frac{b^3}{a+c}+\frac{b\left(a+c\right)}{4}\ge b^2\)                             (2)

\(\frac{c^3}{a+b}+\frac{c\left(a+b\right)}{4}\ge c^2\)                             (3)

Cộng lần lượt từng vế của 3 BĐT (1);(2);(3) ta được:

\(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}+\frac{a\left(b+c\right)}{4}+\frac{b\left(c+a\right)}{4}+\frac{c\left(a+b\right)}{4}\ge a^2+b^2+c^2\)

\(\Leftrightarrow\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}+\frac{2\left(ab+bc+ac\right)}{4}\ge a^2+b^2+c^2\)

\(\Leftrightarrow\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge a^2+b^2+c^2-\frac{ab+bc+ca}{2}\)                 (*)

Áp dụng BĐT \(a^2+b^2+c^2\ge ab+bc+ca\)với 3 số a,b,c>0 ta được:

\(\frac{a^2+b^2+c^2}{2}\ge\frac{ab+bc+ca}{2}\)

Thay vào pt (*) ta được:

\(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge a^2+b^2+c^2-\frac{a^2+b^2+c^2}{2}\)

\(\Leftrightarrow\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge\frac{a^2+b^2+c^2}{2}\left(đpcm\right)\)

k tớ nha !!!

9 tháng 11 2019

Ta có BĐT phụ với \(x;y;z\ge1\)\(\frac{1}{1+x}+\frac{1}{1+y}\ge\frac{2}{1+\sqrt{xy}}\)

\(\Rightarrow\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}+\frac{1}{1+\sqrt[3]{xyz}}\ge\frac{2}{1+\sqrt{xy}}+\frac{2}{1+\sqrt[6]{xyz^4}}\ge\frac{4}{1+\sqrt[3]{xyz}}\)

\(\Rightarrow\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{1+\sqrt[3]{xyz}}\)

Áp dụng:

\(P=\frac{1}{1+a^6}+\frac{1}{1+c^2}+\frac{2}{1+b^3}+\frac{2}{1+c^2}\ge\frac{2}{1+a^3c}+\frac{2}{1+b^3}+\frac{2}{1+c^2}\)

\(P\ge2\left(\frac{1}{1+a^3c}+\frac{1}{1+b^3}+\frac{1}{1+c^2}\right)\ge\frac{6}{1+\sqrt[3]{a^3b^3c^3}}=\frac{6}{1+abc}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Câu a : \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)

\(\Leftrightarrow\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{c+a}+1\right)+\left(\frac{c}{a+b}+1\right)\ge\frac{9}{2}\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge\frac{9}{2}\)

\(VT=\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge\frac{\left(a+b+c\right).9}{2\left(a+b+c\right)}=\frac{9}{2}\) (đpcm)

Dấu "\("="\) xảy ra khi \(a=b=c\)

Câu b : \(VT=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\left(đpcm\right)\)

Dấu = xảy ra khi a=b=c

10 tháng 5 2019

Áp dụng bđt AM-GM:

\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge\frac{2a}{c}\)

\(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{2b}{a}\)

\(\frac{a^2}{b^2}+\frac{c^2}{a^2}\ge\frac{2c}{b}\)

Cộng theo vế và rút gọn => đpcm

\("="\Leftrightarrow a=b=c\)