K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2020

Dự đoán bđt xảy ra tại \(a=b=c\)

Đánh giá bđt trên theo bđt Bunhiacopxki dạng phân thức ta được

\(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}=\frac{a^2}{ab+2ac}+\frac{b^2}{bc+2ab}+\frac{c^2}{ca+2bc}\ge\frac{\left(a+b+c\right)^2}{3\left(ab+ac+bc\right)}\)

Bài toán hoàn tất khi chỉ ra được \(\frac{\left(a+b+c\right)^2}{3\left(ab+ac+bc\right)}\ge1\)Nhưng đánh giá này chính là\(\left(a+b+c\right)^2\ge3\left(ab+ca+bc\right)\)

Vậy bđt được chứng minh

11 tháng 10 2020

Ta có: \(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\)

\(=\frac{a^2}{ab+2ca}+\frac{b^2}{bc+2ab}+\frac{c^2}{ca+2bc}\)

\(\ge\frac{\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\ge\frac{\left(a+b+c\right)^2}{3\cdot\frac{\left(a+b+c\right)^2}{3}}=1\) (Bunhiacopxki dạng cộng mẫu)

Dấu "=" xảy ra khi: a = b = c

9 tháng 8 2017

biếng làm nên đưa link Cộng Đồng MathVn - Diễn đàn thảo luận: Chứng minh BĐT

bất đẳng thức chứa căn..... - Diễn Đàn MathScope

$a\sqrt{a^2+3bc}+b\sqrt{b^2+3ca}+c\sqrt{c^2+3ab}\geq 2(ab+bc+ca)$ - Các bài toán và vấn đề về Bất đẳng thức - Diễn đàn Toán học

11 tháng 8 2017

Chuẩn hóa \(a+b+c=3\) thì cần c/m

\(\sqrt{\frac{a}{3-a}}+\sqrt{\frac{b}{3-b}}+\sqrt{\frac{c}{3-c}}\ge\frac{3\sqrt{2}}{2}\)

Ta có BĐT phụ \(\sqrt{\frac{a}{3-a}}\ge\frac{3\sqrt{2}}{8}a+\frac{\sqrt{2}}{8}\)

\(\Leftrightarrow\frac{\frac{3\left(a-1\right)^2\left(3a-1\right)}{32\left(3-a\right)}}{\sqrt{\frac{a}{3-a}}+\frac{3\sqrt{2}}{8}a+\frac{\sqrt{2}}{8}}\ge0\forall0< a< 3\)

Tương tự cho 2 BĐT còn lại cũng có:

\(\sqrt{\frac{b}{3-b}}\ge\frac{3\sqrt{2}}{8}b+\frac{\sqrt{2}}{8};\sqrt{\frac{c}{3-c}}\ge\frac{3\sqrt{2}}{8}c+\frac{\sqrt{2}}{8}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\ge\frac{3\sqrt{2}}{8}\left(a+b+c\right)+\frac{\sqrt{2}}{8}\cdot3=\frac{3\sqrt{2}}{2}\)

11 tháng 8 2017

Vì sao a + b + c = 3 vậy bạn?

NV
2 tháng 3 2022

Đặt vế trái của BĐT cần chứng minh là P

Ta có: 

\(\dfrac{a^2}{a^2+b^2+c^2-bc}=\dfrac{2a^2}{2a^2+b^2+c^2+\left(b-c\right)^2}\le\dfrac{2a^2}{2a^2+b^2+c^2}=\dfrac{2a^2}{a^2+b^2+a^2+c^2}\)

\(\le\dfrac{1}{2}\left(\dfrac{a^2}{a^2+b^2}+\dfrac{a^2}{a^2+c^2}\right)\)

Tương tự:

\(\dfrac{b^2}{a^2+b^2+c^2-ac}\le\dfrac{1}{2}\left(\dfrac{b^2}{a^2+b^2}+\dfrac{b^2}{b^2+c^2}\right)\)

\(\dfrac{c^2}{a^2+b^2+c^2-ab}\le\dfrac{1}{2}\left(\dfrac{c^2}{a^2+c^2}+\dfrac{c^2}{b^2+c^2}\right)\)

Cộng vế với vế:

\(P\le\dfrac{1}{2}\left(\dfrac{a^2+b^2}{a^2+b^2}+\dfrac{b^2+c^2}{b^2+c^2}+\dfrac{c^2+a^2}{a^2+c^2}\right)=\dfrac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c\)

16 tháng 9 2017

Hơi khó :)) mình ms lớp 8

Ta có : \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{a+c}{b}=\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{a}{b}+\frac{c}{b}\)

\(=\frac{a}{b}+\frac{b}{a}+\frac{a}{c}+\frac{c}{a}+\frac{b}{c}+\frac{c}{b}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}+2\sqrt{\frac{a}{c}.\frac{c}{a}}+2\sqrt{\frac{b}{c}.\frac{c}{b}}=6\)(AM - GM) (1)

Ta lại có : \(\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\ge3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)(AM - GM)

\(\Leftrightarrow2\left(a+b+c\right)\ge3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\ge\frac{3}{\sqrt[3]{\left(b+c\right)\left(a+c\right)\left(a+b\right)}}\)

\(\Rightarrow2\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)\ge9\)

\(\Leftrightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}\ge\frac{9}{2}\)

\(\Leftrightarrow3+\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{9}{2}\Rightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\)(2)

Từ (1);(2) \(\Rightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}+\frac{a+b}{c}+\frac{b+c}{a}+\frac{a+c}{b}\ge6+\frac{3}{2}=\frac{15}{2}\)(đpcm)

16 tháng 9 2017

\(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}=\frac{2\left(a+b+c\right)}{\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\ge\frac{3}{\left(\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right)}\)sai

6 tháng 5 2017

bài này nên sử dụng cauchy ngược

\(\frac{a^3}{a^2+b^2}=a-\frac{ab^2}{a^2+b^2}\)

áp dụng bđt cauchy

\(\frac{a^3}{a^2+b^2}>=a-\frac{ab^2}{2ab}=a-\frac{b}{2}\)

tương tự \(\frac{b^3}{b^2+c^2}>=b-\frac{c}{2},\frac{c^3}{c^2+a^2}>=c-\frac{a}{2}\)

cộng lại=>ĐPCM

23 tháng 9 2017

Đặt \(\left(\frac{a}{b+c};\frac{b}{c+a};\frac{c}{a+b}\right)\rightarrow\left(x;y;z\right)\) Khi đó ta có:

\(\left(x+y+z\right)^2+14xyz\ge4\)

Theo BĐT Nesbit \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\Rightarrow x+y+z\ge\frac{3}{2}\)

\(VT=\left(x+y+z\right)^2+14xyz=x^2+y^2+z^2+2\left(xy+yz+xz\right)+14xyz\)

\(=x^2+y^2+z^2+6xyz+2\left(xy+yz+xz\right)+8xyz\)

\(\ge x^2+y^2+z^2+\frac{9xyz}{x+y+z}+2\left(xy+yz+xz\right)+8xyz\)

\(\ge4\left(xy+yz+xz\right)+8xyz=4\)

5 tháng 5 2019

Cách này xem có đúng không nha bạn

Dự đoán điểm rơi: a=b=c (Để có thể dễ áp dụng AM-GM mà không sai)

Đặt: \(\hept{\begin{cases}a+b=x\\b+c=y\\a+c=z\end{cases}}\)

Do đó: \(\hept{\begin{cases}\frac{a}{b+c}=\frac{\frac{x+z-y}{2}}{y}=\frac{x+z-y}{2y}\\\frac{b}{c+a}=\frac{\frac{x+y-z}{2}}{z}=\frac{x+y-z}{2z}\\\frac{c}{a+b}=\frac{\frac{y+z-x}{2}}{x}=\frac{y+z-x}{2x}\end{cases}}\)

Thế vào:

\(VT=\left(\frac{3}{2}+\frac{x+z-y}{2y}\right)\left(\frac{3}{2}+\frac{x+y-z}{2z}\right)\left(\frac{3}{2}+\frac{y+z-x}{2x}\right)\)

\(=\frac{3y+x+z-y}{2y}\cdot\frac{3z+x+y-z}{2z}+\frac{3x+y+z-x}{2x}\)

\(=\frac{x+z+2y}{2y}\cdot\frac{x+y+2z}{2z}\cdot\frac{y+z+2x}{2x}\)

\(=\frac{x+z+y+y}{2y}\cdot\frac{x+y+z+z}{2z}\cdot\frac{y+z+x+x}{2x}\ge\frac{4\sqrt[4]{xy^2z}\cdot4\sqrt[4]{xyz^2}\cdot4\sqrt[4]{x^2yz}}{8xyz}=\frac{64\sqrt[4]{x^4y^4z^4}}{8xyz}=8\)

Vậy suy ra đpcm.

Mik đặt x+z+y+y và x+y+z+z và y+z+x+x ra rồi áp dụng AM-GM cho 4 số thực dương vì lúc đó bất đẳng thức có điểm rơi khi x=y=z hay a=b=c đúng với điểm rơi của Bđt cần CM.

Học tốt! Share thêm bài nha 

5 tháng 5 2019

Chắc ok đấy.Mình đăng lời giải của tạp chí Toán tuổi thơ nha!

             Lời giải (chú ý là của tạp chí Toán tuổi thơ chứ không phải của mình)

Ta có: \(\frac{3}{2}+\frac{a}{b+c}=\frac{3b+3c+2a}{2\left(b+c\right)}\) 

Áp dụng BĐT AM-GM,ta có:

\(\left(c+a\right)+\left(a+b\right)\ge2\sqrt{\left(c+a\right)\left(a+b\right)}\);

\(2\left(\sqrt{\left(c+a\right)\left(a+b\right)}+\left(b+c\right)\right)\ge4\sqrt[4]{\left(c+a\right)\left(a+b\right)\left(b+c\right)^2}\)

Thiết lập hai BĐT còn lại tương tự và nhân theo vế suy ra đpcm.

Đẳng thức xảy ra khi và chỉ khi a + b = b + c = c + a <=> a = b =c