K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đề bài cần thêm là a,b,c nguyên .

Ta có : \(a+b+c=3\)

\(\Rightarrow\left(a+b+c\right)^2=9\)

\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=9\)

Mà \(a^2+b^2+c^2=5\)

\(\Rightarrow2\left(ab+bc+ca\right)=4\)

\(\Rightarrow ab+bc+ca=2\)

Ta lại có : \(\left(a^2+2\right)\left(b^2+2\right)\left(c^2+2\right)\)

\(=\left(a^2+ab+bc+ca\right)\left(b^2+ab+bc+ca\right)\left(c^2+ab+bc+ca\right)\)

\(=\left(a+b\right)\left(c+a\right)\left(a+b\right)\left(b+c\right)\left(b+c\right)\left(c+a\right)\)

\(=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)

Vì \(a,b,c\inℤ\)nên \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\inℤ\)

\(\Rightarrowđpcm\)

16 tháng 2 2021

Ta có a + b +c = 3

=> (a + b + c)2 = 9

=> a2 + b2 + c2 + 2ab + 2bc + 2ca = 9

=> 2ab + 2bc + 2ca = 4 (vì a2 + b2 + c2 = 5)

=> 2(ab + bc + ca) = 4

=> ab + bc + ca = 2

Khi đó A = (a2 + 2)(b2 + 2)(c2 + 2)

= (a2 + ab + bc + ca)(b2 + ab + bc + ca)(c2 + ab + bc + ca)

= [(a + b)(a + c)].[(a + b)(b + c)].[(a + c)(b + c)]

= (a + b)2.(b + c)2.(c + a)2

= [(a + b)(b + c)(c + a)]2 

=> đpcm

DD
16 tháng 2 2021

Do \(a,b,c\)có vai trò như nhau nên ta giả sử \(a\ge b\ge c\)

\(3=a+b+c\le a+a+a\Rightarrow a\ge1\).

\(a^2+b^2+c^2=5\Rightarrow a^2\le5\Rightarrow a\in\left\{1,2\right\}\).

Với \(a=2\)\(\hept{\begin{cases}b+c=1\\b^2+c^2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}b=1\\c=0\end{cases}}\).

Với \(a=1\Rightarrow b=c=1\)thử vào phương trình \(a^2+b^2+c^2=5\)không thỏa mãn. 

Vậy \(A=\left(a^2+2\right)\left(b^2+2\right)\left(c^2+2\right)=\left(2^2+2\right)\left(1^2+2\right)\left(0^2+2\right)=36=6^2\)là bình phương của một số nguyên. 

18 tháng 12 2020

Đặt \(\left\{{}\begin{matrix}\dfrac{a}{b^2}=x\\\dfrac{b}{c^2}=y\\\dfrac{c}{a^2}=z\end{matrix}\right.\Rightarrow xyz=1;x+y+z=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)

Ta có \(x+y+z=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)

\(\Leftrightarrow x+y+z=xy+yz+zx\)

\(\Leftrightarrow xyz-1+x+y+z-xy-yz-zx=0\)

\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\left(z-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\left(z-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\y=1\\z=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{a}{b^2}=1\\\dfrac{b}{c^2}=1\\\dfrac{c}{a^2}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=b^2\\b=c^2\\c=a^2\end{matrix}\right.\left(đpcm\right)\)

AH
Akai Haruma
Giáo viên
18 tháng 3 2021

Lời giải:

Sửa lại điều kiện $ab+bc+ac=1$ mới đúng nhé bạn

Thay $1=ab+bc+ac$ ta có:

$A=(a^2+ab+bc+ac)(b^2+ab+bc+ac)(c^2+ab+bc+ac)$

$=(a+b)(a+c)(b+c)(b+a)(c+a)(c+b)$

$=[(a+b)(b+c)(c+a)]^2$

Vì $a,b,c\in\mathbb{Q}$ nên $(a+b)(b+c)(c+a)\in \mathbb{Q}$

Do đó $A$ là bình phương của số hữu tỉ.

Ta có đpcm.

19 tháng 9 2016

thtfgfgfghggggggggggggggggggggg

DD
29 tháng 3 2022

Đặt \(\frac{a}{b^2}=x,\frac{b}{c^2}=y,\frac{c}{a^2}=z\).

\(\Rightarrow xyz=\frac{abc}{a^2b^2c^2}=\frac{1}{abc}=1\)

Theo bài ra ta có : \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}=\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\)

\(\Leftrightarrow x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(\Leftrightarrow x+y+z=xy+yz+xz\)

\(\Leftrightarrow\left(xy-x-y+1\right)-1+z\left(x+y-1\right)=0\)

\(\Leftrightarrow\left(xy-x-y+1\right)+z\left(x+y-1-xy\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(y-1\right)-z\left(x-1\right)\left(y-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\left(1-z\right)=0\)

\(\Leftrightarrow\frac{a-b^2}{b^2}.\frac{b-c^2}{c^2}.\frac{a^2-c}{a^2}=0\)

\(\Leftrightarrow\left(a-b^2\right)\left(b-c^2\right)\left(c-a^2\right)=0\)

Ta có đpcm