K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 11 2019

\(A\ge\frac{1}{2}\left(x+y\right)^2+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)^2\ge\frac{1}{2}\left(x+y\right)^2+\frac{8}{\left(x+y\right)^2}\)

\(A\ge\frac{1}{2}\left(x+y\right)^2+\frac{1}{2\left(x+y\right)^2}+\frac{15}{2\left(x+y\right)^2}\ge1+\frac{15}{2}=\frac{17}{2}\)

\(A_{min}=\frac{17}{2}\) khi \(x=y=\frac{1}{2}\)

12 tháng 8 2017

Các bất đẳng thức đúng : \(ab\le\frac{\left(a+b\right)^2}{4};\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

Áp dụng ta được :

\(A=\frac{1}{x^2+y^2}+\frac{2}{xy}\)

\(=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{3}{2xy}\)

Ta có :

\(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{x^2+y^2+2xy}=\frac{4}{\left(x+y\right)^2}\ge4\)

\(\frac{3}{2xy}\ge\frac{3}{2.\frac{\left(x+y\right)^2}{4}}=\frac{3}{2.\frac{1}{4}}=6\)

\(\Rightarrow A=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{3}{2xy}\ge4+6=10\)

Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)

Vậy \(A_{min}=10\) tại \(x=y=\frac{1}{2}\)

14 tháng 8 2018

thangwd hdashdfjdfishjdf

30 tháng 5 2017

\(M^2=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2xy}{\sqrt{yz}}+\frac{2yz}{\sqrt{zx}}+\frac{2xz}{\sqrt{yz}}=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2x\sqrt{y}}{\sqrt{z}}+\frac{2y\sqrt{z}}{\sqrt{x}}+\frac{2z\sqrt{x}}{\sqrt{y}}\)

Áp dụng bđt Cô-si: \(\frac{x^2}{y}+\frac{x\sqrt{y}}{\sqrt{z}}+\frac{x\sqrt{y}}{\sqrt{z}}+z\ge4\sqrt[4]{\frac{x^2}{y}.\frac{x\sqrt{y}}{\sqrt{z}}.\frac{x\sqrt{y}}{\sqrt{z}}.z}=4x\)

tương tự \(\frac{y^2}{z}+\frac{y\sqrt{z}}{\sqrt{x}}+\frac{y\sqrt{z}}{\sqrt{x}}+x\ge4y\);\(\frac{z^2}{x}+\frac{z\sqrt{x}}{\sqrt{y}}+\frac{z\sqrt{x}}{\sqrt{y}}+y\ge4z\)

=>\(M^2+x+y+z\ge4\left(x+y+z\right)\Rightarrow M^2\ge3\left(x+y+z\right)\ge3.12=36\Rightarrow M\ge6\)

Dấu "=" xảy ra khi x=y=z=4

Vậy minM=6 khi x=y=z=4

30 tháng 5 2017

b1: Áp dụng bđt Cauchy Schwarz dạng Engel ta được:

\(P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+y+y}=\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=\frac{2}{2}=1\)

=>minP=1 <=> x=y=z=2/3

14 tháng 11 2019

\(\left(x^2+\frac{1}{x^2}\right)\left(2^2+\frac{1}{2^2}\right)\ge\left(2x+\frac{1}{2x}\right)^2\) 

\(\Leftrightarrow x^2+\frac{1}{x^2}\ge\frac{4}{17}\left(2x+\frac{1}{2x}\right)^2\)Rồi tương tự các kiểu...

Suy ra \(M\ge\sqrt{\frac{4}{17}}\left[2\left(x+y\right)+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)\right]\ge\sqrt{\frac{4}{17}}\left(2.4+\frac{1}{2}.\frac{4}{x+y}\right)=\sqrt{17}\)

"=" <=> x = y = 2

Is that true?

14 tháng 11 2019

different way

Áp dụng min-cop-xki ta có:

\(M=\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}\ge\sqrt{\left(x+y\right)^2+\left(\frac{1}{x}+\frac{1}{y}\right)^2}\ge\sqrt{16+\frac{16}{\left(x+y\right)^2}}=\sqrt{17}\)

Dau '=' xay ra khi \(x=y=2\)

25 tháng 9 2016

a/ \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=x^2y^2+\frac{1}{x^2y^2}+2=\left(xy-\frac{1}{xy}\right)^2+4\ge4\)

Suy ra Min M = 4 . Dấu "=" xảy ra khi x=y=1/2

b/ Đề đúng phải là \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{3}{2}\)

Ta có \(6=\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\ge\frac{9}{2\left(x+y+z\right)}\Rightarrow x+y+z\ge\frac{3}{4}\)

Lại có \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{9}{8\left(x+y+z\right)}\ge\frac{9}{8.\frac{3}{4}}=\frac{3}{2}\)

13 tháng 7 2017

đề đúng , giải sai kìa ...

25 tháng 9 2019

Đã tìm ra lời giải:

gt \(\Rightarrow\left(xy+yz+zx\right)^2=\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)

\(\Leftrightarrow xy+yz+zx\ge3\)

Áp dụng bđt Bunhiacopxki:

\(\frac{1}{\left(x^2+y+1\right)\left(1+y+z^2\right)}\le\frac{1}{\left(x+y+z\right)^2}\Rightarrow\frac{1}{x^2+y+1}\le\frac{1+y+z^2}{\left(x+y+z\right)^2}\)

Tương tự rồi cộng lại, ta được:

\(VT\le\frac{\left(x^2+y^2+z^2\right)+\left(x+y+z\right)+3}{\left(x+y+z\right)^2}\)

\(=\frac{\left(x+y+z\right)^2-2\left(xy+yz+zx\right)+\left(xy+yz+zx\right)+3}{\left(x+y+z\right)^2}\)

\(=1+\frac{-\left(xy+yz+zx\right)+3}{\left(xy+yz+zx\right)^2}\le1+\frac{-3+3}{3^2}=1\)

Dấu đẳng thức xảy ra khi x = y = z = 1

2 tháng 1 2021

3: \(P=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(y+z\right)+\left(y+x\right)}+\dfrac{z}{\left(z+x\right)+\left(z+y\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)+\dfrac{1}{4}\left(\dfrac{y}{y+z}+\dfrac{y}{y+x}\right)+\dfrac{1}{4}\left(\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)=\dfrac{3}{2}\).

Đẳng thức xảy ra khi x = y = x = \(\dfrac{1}{3}\).

16 tháng 6 2019

Anh/chị tham khảo ở đây ạ: Câu hỏi của Nguyễn Linh Chi - Toán lớp 8