K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2019

\(\text{Đặt }\frac{x}{2}=\frac{y}{3}=k\)

\(\Rightarrow x=2k;y=3k\)

Từ \(\frac{x+2}{x-2}=\frac{2k+2}{2k-2}=\frac{2\left(k+1\right)}{2\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\)

\(;\frac{y+3}{y-3}=\frac{3k+3}{3k-3}=\frac{3\left(k+1\right)}{3\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\)

\(\text{Từ (1) và (2) }\Rightarrow\frac{x+2}{x-2}=\frac{x+3}{x-3}\left(\text{đpcm}\right)\)

1 tháng 9 2019

Đặt \(\frac{x}{2}\) và \(\frac{y}{3}=k\)

Từ đó ta có : \(\frac{x+2}{x-2}=\frac{2k+2}{2k-2}=\frac{k+1}{k-1}\left(1\right)\) 

\(\frac{y+3}{y-3}=\frac{3k+3}{3k-3}=\frac{k+1}{k-1}\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow\frac{x}{2}=\frac{y}{3}\)

12 tháng 5 2015

CÔSI ta có VT<=1/xy+1/zy+1/zx. 

sau đó vẫn áp dụng bất đẳng thức cosi tùng đôi một vế phải đã cho ta sẽ đc điều phải chứng minh

29 tháng 5 2018

Ta có \(A=\frac{x^4}{x^3+x^2y+xy^2}+...\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^3+y^3+z^3+xy^2+yz^2+zx^2+x^2y+y^2z+z^2x}\)

=> \(A\ge\frac{\left(x^2+y^2+z^2\right)^2}{\left(x^2+y^2+z^2\right)\left(x+y+z\right)}=\frac{x^2+y^2+z^2}{x+y+z}\ge\frac{x+y+z}{3}\left(ĐPCM\right)\)

dấu = xảy ra <=> x=y=z>=0

29 tháng 5 2018

Thanks

24 tháng 3 2019

  1. ​​fddfssdfdsfdssssssssssssssffffffffffffffffffsssssssssssssssssssfsssssssssssssssssssssssfffffffffffffff
24 tháng 3 2019

Ez lắm =)

Bài 1:

Với mọi gt \(x,y\in Q\) ta luôn có: 

\(x\le\left|x\right|\) và \(-x\le\left|x\right|\) 

\(y\le\left|y\right|\) và \(-y\le\left|y\right|\Rightarrow x+y\le\left|x\right|+\left|y\right|\) và \(-x-y\le\left|x\right|+\left|y\right|\)

Hay: \(x+y\ge-\left(\left|x\right|+\left|y\right|\right)\)

Do đó: \(-\left(\left|x\right|+\left|y\right|\right)\le x+y\le\left|x\right|+\left|y\right|\)

Vậy: \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)

Dấu "=" xảy ra khi: \(xy\ge0\)

17 tháng 1 2019

Đặt \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)

Theo giả thiết,ta có: \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{cd}=\frac{3}{abc}\)

Nhân hai vế với abc: \(a+b+c=3\) tức là \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)

Lại có:\(3=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{xyz}\)

Ta cần c/m: \(A\ge\frac{3}{2}\)

Do x,y,z > 0 áp dụng BĐT Cô si: \(x^3+y^3+z^3\ge3xyz=xy+yz+zx\)

Áp dụng BĐT Cô si: \(A\ge3\sqrt[3]{\frac{x^3y^3z^3}{\left(z+x^2\right)\left(x+y^2\right)\left(y+z^2\right)}}\)

\(=3xyz.\frac{1}{\sqrt[3]{\left(z+x^2\right)\left(x+y^2\right)\left(y+z^2\right)}}\)\(\ge3xyz.\frac{xy+yz+zx}{\left(x+y+z\right)+\left(x^2+y^2+z^2\right)}\)

\(=\frac{3\left(x^2y^2z+xy^2z^2+x^2yz^2\right)}{\left(x+y+z\right)+\left(x^2+y^2+z^2\right)}\ge\frac{3x^2y^2z^2}{\left(x+y+z\right)+\left(x^2+y^2+z^2\right)}\)

\(=\frac{3x^2y^2z^2}{\left(x+y+z\right)+\left(x+y+z\right)^2-2\left(xy+yz+zx\right)}\)

\(=\frac{3x^2y^2z^2}{\left(x+y+z\right)\left(x+y+z+1\right)-6xyz}\)

\(=\frac{3x^2y^2z^2}{xyz\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left[xyz\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+1\right]-6xyz}\)

\(=\frac{3x^2y^2z^2}{3xyz\left[3xyz+1\right]-6xyz}=\frac{3x^2y^2z^2}{9x^2y^2z^2-3xyz}\)

Đặt \(B=\frac{1}{A}=\frac{9x^2y^2z^2-3xyz}{3x^2y^2z^2}\)

Ta sẽ c/m: \(B\ge\frac{2}{3}\).Thật vậy,ta có:

\(B=\frac{1}{A}=\frac{9x^2y^2z^2-3xyz}{3x^2y^2z^2}=3-\frac{3}{3xyz}\)\(=3-\frac{1}{xyz}\ge0\)

Suy ra \(A\ge0?!?\) có gì đó sai sai.Ai biết chỉ  giùm

18 tháng 1 2019

Nghĩ mãi mới ra -.- Để ý cái số mũ 3 trên tử khó mà dùng trực tiếp Cô-si hoặc  Bunhia nên phải tách nó ra

Ta có: \(\frac{x^3}{x^2+z}=\frac{x^3+xz}{x^2+z}-\frac{xz}{x^2+z}=x-\frac{xz}{x^2+z}\)

                                                                     \(\ge x-\frac{xz}{2x\sqrt{z}}\)(Cô-si)

                                                                       \(=x-\frac{\sqrt{z}}{2}\)

                                                                        \(\ge x-\frac{z+1}{4}\)(Dùng bđt \(\sqrt{z}\le\frac{z+1}{2}\))

 Tương tự \(\frac{y^3}{y^2+z}\ge y-\frac{x+1}{4}\)

               \(\frac{z^3}{z^2+y}\ge z-\frac{y+1}{4}\)

Cộng từng vế của các bđt trên lại được

\(A\ge x+y+z-\frac{x+y+z+3}{4}=\frac{3x+3y+3z-3}{4}\)

                                                                   \(=\frac{3\left(x+y+z\right)}{4}-\frac{3}{4}\)

Từ điều kiện \(xy+yz+zx=3xyz\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)

Áp dụng bđt \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\left(a,b,c>0\right)\)được

\(3=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)

\(\Rightarrow x+y+z\ge3\)

Quay trở lại với A

\(A\ge\frac{3\left(x+y+z\right)}{4}-\frac{3}{4}\ge\frac{3.3}{4}-\frac{3}{4}=\frac{3}{2}=\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)(Do \(3=\frac{1}{x}+\frac{1}{y}=\frac{1}{z}\))

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y=z\\xy+yz+zx=3\end{cases}\Leftrightarrow x=y=z=1}\)

Vậy .............

AH
Akai Haruma
Giáo viên
25 tháng 10 2017

Lời giải:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\text{VT}=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}=\frac{\left(\frac{x}{y}\right)^2}{\frac{1}{y}}+\frac{\left(\frac{y}{z}\right)^2}{\frac{1}{z}}+\frac{\left(\frac{z}{x}\right)^2}{\frac{1}{x}}\geq \frac{\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)^2}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}\)

Giờ ta cần chỉ ra \(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\geq \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

Thật vậy, do $xyz=1$ nên tồn tại các số dương \(a,b,c\) sao cho:

\((x,y,z)=\left(\frac{a}{b};\frac{b}{c};\frac{c}{a}\right)\)

Bài toán tương đương với

\(\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ca}{b^2}\geq \frac{a}{b}+\frac{b}{c}+\frac{c}{a}\Leftrightarrow (ab)^3+(bc)^3+(ca)^3\geq a^3bc^2+b^3ca^2+c^3ab^2\)

Áp dụng BĐT Am-Gm ta có:

\((ab)^3+(ab)^3+(bc)^3\geq 3b^3ca^2\)

Thực hiện tương tự và cộng theo vế, suy ra:

\(3[(ab)^3+(bc)^3+(ca)^3]\geq 3(a^3bc^2+b^3ca^2+c^3ab^2)\)

\(\Leftrightarrow (ab)^3+(bc)^3+(ca)^3\geq a^3bc^2+b^3ca^2+c^3ab^2\)

Do đó ta có đpcm.

Dấu bằng xảy ra khi \(a=b=c\Leftrightarrow x=y=z=1\)

23 tháng 10 2017

@Ace Legona

22 tháng 8 2019

Đậu phộng rANG !

22 tháng 8 2019

Ko làm đc thì đừng trl linh tinh nhé -_-

17 tháng 3 2019

Ta có : \(\frac{x}{y^3-1}-\frac{y}{x^3-1}=\frac{x\left(x^3-1\right)-y\left(y^3-1\right)}{\left(x^3-1\right)\left(y^3-1\right)}\)

\(=\frac{x^4-x-y^4+y}{\left(x^3-1\right)\left(y^3-1\right)}\)

\(=\frac{\left(x^2-y^2\right)\left(x^2+y^2\right)-\left(x-y\right)}{x^3y^3-y^3-x^3+1}\)

\(=\frac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)-\left(x-y\right)}{x^3y^3-\left(x+y\right)\left(x^2-xy+y^2\right)+1}\)

\(=\frac{\left(x-y\right)\left(x^2+y^2-1\right)}{x^3y^3-x^2+xy-y^2+\left(x+y\right)^2}\)

\(=\frac{\left(x-y\right)\left[x^2+y^2-\left(x+y\right)^2\right]}{x^3y^3+3xy}\)

\(=\frac{\left(x-y\right).\left(-2xy\right)}{xy\left(x^2y^2+3\right)}=\frac{-2\left(x-y\right)}{x^2y^2+3}\)

\(\Rightarrow\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\) ( đpcm )

17 tháng 3 2019

Kết hợp với giả thiết nêu ra ở đề bài, ta có vài biến đổi sau:

\(\frac{x}{y^3-1}=\frac{x}{\left(y-1\right)\left(y^2+y+1\right)}=\frac{x}{\left[y-\left(x+y\right)\right]\left(y^2+y+1\right)}=-\frac{1}{y^2+y+1}\) \(\left(1\right)\)

\(\frac{y}{x^3-1}=\frac{y}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{y}{\left[x-\left(x+y\right)\right]\left(x^2+x+1\right)}=-\frac{1}{x^2+x+1}\) \(\left(2\right)\)

Mặt khác, ta lại có: \(\left(x^2+x+1\right)\left(y^2+y+1\right)=x^2y^2+xy^2+y^2+x^2y+xy+y+x^2+x+1\)

\(=x^2y^2+\left[x^2+xy\left(x+y\right)+xy+y^2\right]+\left(x+y\right)+1=x^2y^2+\left(x+y\right)^2+2=x^2y^2+3\)

Khi đó, trừ đẳng thức \(\left(1\right)\) cho đẳng thức \(\left(2\right)\) vế theo vế, ta được:

\(\frac{x}{y^3-1}-\frac{y}{x^3-1}=\frac{1}{x^2+x+1}-\frac{1}{y^2+y+1}=\frac{\left(y-x\right)\left(x+y+1\right)}{\left(x^2+x+1\right)\left(y^2+y+1\right)}=\frac{-2\left(x-y\right)}{x^2y^2+3}\)

Vậy, \(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}=-\frac{2\left(x-y\right)}{x^2y^2+3}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\)