K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2019

Bài này ko ez như em nghĩ ban đầu -_-"

2/Dễ có:

\(2a^2.\frac{1}{b+c}\le\frac{1}{4}.2a^2\left(\frac{1}{b}+\frac{1}{c}\right)=\frac{a^2}{2}\left(\frac{1}{b}+\frac{1}{c}\right)=\frac{a^2}{2b}+\frac{a^2}{2c}\)

Tương tự hai BĐT còn lại và cộng theo vế ta thu được:

\(VT\le\frac{1}{2}\left(\frac{a^2}{b}+\frac{a^2}{c}+\frac{b^2}{c}+\frac{b^2}{a}+\frac{c^2}{a}+\frac{c^2}{b}\right)\)

Cần chứng minh \(\frac{1}{2}\left(\frac{a^2}{b}+\frac{a^2}{c}+\frac{b^2}{c}+\frac{b^2}{a}+\frac{c^2}{a}+\frac{c^2}{b}\right)\le\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)

Hay: \(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\)

12 tháng 8 2019

Vũ Minh Tuấn, tth, Nguyễn Văn Đạt, svtkvtm, DƯƠNG PHAN KHÁNH DƯƠNG, Lê Thảo, buithianhtho

giúp mk vs! Cảm ơn nhiều!

4 tháng 12 2016

Theo bài ra ta có \(0\le a\le b\le c\) nên b\(+\)\(\ge\)2b

Do đó suy ra \(\frac{2a^2}{b+c}\le\frac{2a^2}{2b}\)suy ra \(\frac{2a^2}{b+c}\le\frac{a^2}{b}\)

Chưng minh tương tự có \(\frac{2b^2}{c+a}\le\frac{b^2}{c}\)và \(\frac{2c^2}{a+b}\le\frac{c^2}{a}\)

Cộng vế với vế của các bđt cùng chiều trên ta sẽ suy ra điều phải chứng minh

#nga

4 tháng 12 2016

Sai rồi nếu như theo cách chứng minh của bạn thì ta có: a + c \(\ge2c\)cái này vô lý. 

18 tháng 11 2019

1. Vai trò a, b, c như nhau. Không mất tính tổng quát. Giả sử \(a\ge b\ge0\)

\(ab+bc+ca=3\). Do đó \(ab\ge1\)

Ta cần chứng minh rằng \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\left(1\right)\)

\(\frac{2}{1+ab}+\frac{1}{1+c^2}\ge\frac{3}{2}\left(2\right)\)

Thật vậy: \(\left(1\right)\Leftrightarrow\frac{1}{1+a^2}-\frac{1}{1+ab}+\frac{1}{1+b^2}-\frac{1}{1+ab}\ge0\\ \Leftrightarrow\left(ab-a^2\right)\left(1+b^2\right)+\left(ab-b^2\right)\left(1+a^2\right)\ge0\\ \Leftrightarrow\left(a-b\right)\left[-a\left(1+b^2\right)+b\left(1+a^2\right)\right]\ge0\\ \Leftrightarrow\left(a-b\right)^2\left(ab-1\right)\ge0\left(BĐT:đúng\right)\)

\(\left(2\right)\Leftrightarrow c^2+3-ab\ge3abc^2\\ \Leftrightarrow c^2+ca+bc\ge3abc^2\Leftrightarrow a+b+c\ge3abc\)

BĐT đúng, vì \(\left(a+b+c\right)^2>3\left(ab+bc+ca\right)=q\)

\(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}\)

Nên \(a+b+c\ge3\ge3abc\)

Từ (1) và (2) ta có \(\frac{1}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}\ge\frac{3}{2}\)

Dấu ''='' xảy ra \(\Leftrightarrow a=b=c=1\)

18 tháng 11 2019

Áp dụng BĐT Cauchy dạng \(\frac{9}{x+y+z}\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\), ta được

\(\frac{9}{a+3b+2c}=\frac{1}{a+c+b+c+2b}\le\frac{1}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)

Do đó ta được

\(\frac{ab}{a+3b+2c}\le\frac{ab}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)=\frac{1}{9}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{a}{2}\right)\)

Hoàn toàn tương tự ta được

\(\frac{bc}{2a+b+3c}\le\frac{1}{9}\left(\frac{bc}{a+b}+\frac{bc}{b+c}+\frac{b}{2}\right);\frac{ac}{3a+2b+c}\le\frac{1}{9}\left(\frac{ac}{a+b}+\frac{ac}{b+c}+\frac{c}{2}\right)\)

Cộng theo vế các BĐT trên ta được

\(\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ca}{c+3a+2b}\le\frac{1}{9}\left(\frac{ac+bc}{a+b}+\frac{ab+ac}{b+c}+\frac{bc+ab}{a+c}+\frac{a+b+c}{2}\right)=\frac{a+b+c}{6}\)Vậy BĐT đc CM

ĐẲng thức xảy ra khi và chỉ khi a = b = c >0

6 tháng 7 2016

Trả lời hộ mình đi

NV
13 tháng 6 2020

Đặt vế trái là P

\(P=\frac{1}{a^2+b^2+b^2+1+2}+\frac{1}{b^2+c^2+c^2+1+2}+\frac{1}{c^2+a^2+a^2+1+2}\)

\(P\le\frac{1}{2ab+2b+2}+\frac{1}{2bc+2c+2}+\frac{1}{2ca+2a+2}=\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}\right)\)

\(P\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{abc}{bc+c+abc}+\frac{b}{abc+ab+b}\right)\)

\(P\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{ab}{b+1+ab}+\frac{b}{1+ab+b}\right)=\frac{1}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

30 tháng 5 2020

Ta có: \(a^2+2b+3=\left(a^2+1\right)+2\left(b+1\right)\ge2\left(a+b+1\right)\)

Tương tự ta có: \(b^2+2c+3\ge2\left(b+c+1\right)\)\(c^2+2a+3\ge2\left(c+a+1\right)\)

Từ đó suy ra\(\frac{a}{a^2+2b+3}+\frac{b}{b^2+2c+3}+\frac{c}{c^2+2a+3}\)\(\le\frac{a}{2\left(a+b+1\right)}+\frac{b}{2\left(b+c+1\right)}+\frac{c}{2\left(c+a+1\right)}\)

\(=\frac{1}{2}\left(\frac{a}{a+b+1}+\frac{b}{b+c+1}+\frac{c}{c+a+1}\right)\)

Đặt \(K=\frac{a}{a+b+1}+\frac{b}{b+c+1}+\frac{c}{c+a+1}\), ta đi chứng minh \(K\le1\)

Thật vậy: \(3-K=\frac{b+1}{a+b+1}+\frac{c+1}{b+c+1}+\frac{a+1}{c+a+1}\)

\(=\frac{\left(b+1\right)^2}{\left(b+1\right)\left(a+b+1\right)}+\frac{\left(c+1\right)^2}{\left(c+1\right)\left(b+c+1\right)}+\frac{\left(a+1\right)^2}{\left(a+1\right)\left(c+a+1\right)}\)

\(\ge\frac{\left(a+b+c+3\right)^2}{\left(b+1\right)\left(a+b+1\right)+\left(c+1\right)\left(b+c+1\right)+\left(a+1\right)\left(c+a+1\right)}\)(*)

Ta có: \(\left(b+1\right)\left(a+b+1\right)+\left(c+1\right)\left(b+c+1\right)+\left(a+1\right)\left(c+a+1\right)\)\(=3\left(a+b+c\right)+ab+bc+ca+a^2+b^2+c^2+3\)

(Mình gõ bằng chương trình Universal Math Solver, không hiện ảnh thì vô thống kê hỏi đáp của mình, ngày 30/5/2020 vào lúc 8:25)

\(=\frac{1}{2}\left[\left(a+b+c\right)^2+6\left(a+b+c\right)+9\right]=\frac{1}{2}\left(a+b+c+3\right)^2\)(**)

Từ (*) và (**) suy ra \(3-K\ge\frac{\left(a+b+c+3\right)^2}{\frac{1}{2}\left(a+b+c+3\right)^2}=2\Rightarrow K\le1\)

Vậy ta có điều phải chứng minh

Đẳng thức xảy ra khi a = b = c = 1

30 tháng 5 2020

Áp dụng BĐT Cô-si,ta có :

\(a^2+1\ge2a\)

\(\Rightarrow\frac{a}{a^2+2b+3}\le\frac{a}{2a+2b+2}=\frac{1}{2}\left(\frac{a}{a+b+1}\right)\)

Tương tự : \(\frac{b}{b^2+2c+3}\le\frac{1}{2}\left(\frac{b}{b+c+1}\right);\frac{c}{c^2+2a+3}\le\frac{1}{2}\left(\frac{c}{c+a+1}\right)\)

\(\Rightarrow\frac{a}{a^2+2b+3}+\frac{b}{b^2+2c+3}+\frac{c}{c^2+2a+3}\le\frac{1}{2}\left(\frac{a}{a+b+1}+\frac{b}{b+c+1}+\frac{c}{c+a+1}\right)\)

Áp dụng BĐT Bu-nhi-a-cốp-ski,ta có :

\(\frac{a}{a+b+1}=\frac{a\left(a+b+c^2\right)}{\left(a+b+1\right)\left(a+b+c^2\right)}\le\frac{a^2+ab+ac^2}{\left(a^2+b^2+c^2\right)^2}=\frac{a^2+ab+ac^2}{9}\)

TT : ...

Cộng lại ta được :

\(\frac{a}{a+b+1}+\frac{b}{b+c+1}+\frac{c}{c+a+1}\le\frac{a^2+ab+ac^2}{9}+\frac{b^2+bc+ba^2}{9}+\frac{c^2+ca+cb^2}{9}\)

\(=\frac{a^2+b^2+c^2+ab+bc+ac+ac^2+ba^2+cb^2}{9}\le\frac{3+3+3}{9}=1\)

\(\Rightarrow\frac{a}{a^2+2b+3}+\frac{b}{b^2+2c+3}+\frac{c}{c^2+2a+3}\le\frac{1}{2}\)

Dấu "=" xảy ra khi a = b = c = 1

22 tháng 4 2018

Ngược dấu rồi

22 tháng 4 2018

Mk sửa r đó. H giúp mk vs. Cảm ơn

2 tháng 12 2020

Đặt \(\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)=\left(x,y,z\right)\)

\(x+y+z\ge\frac{x^2+2xy}{2x+y}+\frac{y^2+2yz}{2y+z}+\frac{z^2+2zx}{2z+x}\)

\(\Leftrightarrow x+y+z\ge\frac{3xy}{2x+y}+\frac{3yz}{2y+z}+\frac{3zx}{2z+x}\)

\(\frac{3xy}{2x+y}\le\frac{3}{9}xy\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{3}\left(x+2y\right)\)

\(\Rightarrow\Sigma_{cyc}\frac{3xy}{2x+y}\le\frac{1}{3}\left[\left(x+2y\right)+\left(y+2z\right)+\left(z+2x\right)\right]=x+y+z\)

Dấu "=" xảy ra khi x=y=z