K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2019

\(a\left(b-c\right)-a\left(b+d\right)=-a\left(c+d\right)\)

\(\Rightarrow ab-ac-ab-ad=-ac-ad\)

\(\Rightarrow\left(ab-ab\right)+\left(-ac+ac\right)+\left(-ad+ad\right)=0\)

\(\Rightarrow0=0\)(luôn đúng)

23 tháng 1 2019

a) Biến đổi vế trái , ta có :

VT = a*(b-c)-a*(b+d)=a.(b-c-b-d)=a.(-c-d)=-a.(c+d)=VP (đpcm)

A) a.(b+c) - a.(b+d)= a.(c-d)

=> ab+ac -ab-ad=ac-ad

=>ac-ad=ac-ad(đpcm)

các câu kia bạn lm tương tự

bn vào câu hỏi tương tự và tìm câu hỏi của trần thị mỹ trang tham khảo

22 tháng 3 2020

A) a.(b + c) - a.(b + d) = a.b + a.c - a.b - a.d                  B) a.(b - c) + a.(d - c) = a.b - a.c + a.d - a.c

                                    = (a.b - a.b) + (a.c - a.d)                                           = (a.b + a.d) - (a.c - a.c)

                                    = a.c - a.d                                                                 = a.(b + d) - a.c + a.c

                                    = a.(c - d)                                                                 = a.(b + d) 

C) a.(b - c) - a.(b + d) = a.b - a.c - a.b + a.d                     

                                   = (a.b - a.b) - (a.c + a.d)                                                                         

                                   = 0 - a.(c + d)                               

                                   = -a.(c + d)                                   

24 tháng 11 2017

Đáp án: C

A ∩  B = {b; d}; A ∩  C = {a; b}; B ∩ C = {b; e}

A \ B = {a; c}; A \ C = {c; d}; B \ C = {d}

A ∪  B = {a; b; c; d; e}; A ∪  C = {a; b; c; d; e}

A ∩  (B \ C) = {d}. (A ∩  B) \ (A ∩  C) =  {d}.

A \ (B ∩ C) = {a; c; d}. (A \ B) ∪  (A \ C) = {a; c; d}.

(A \ B) ∩  (A \ C) = {c}.

a. A ∩  (B \ C) = (A ∩  B) \ (A ∩  C) ={d} ⇒ a đúng.

b. A \ (B ∩ C)= {a; c; d}  (A \ B) ∩  (A \ C)={c} ⇒ b sai.

c. A ∩  (B \ C) ={d}  (A \ B) ∩  (A \ C)={c}   c sai

d. A \ (B ∩C) = (A \ B) ∪ (A \ C)= {a; c; d} ⇒ d đúng.

4 tháng 8 2019

1) a( b+c) - b(a-c) = ( a+b) c

VT = a( b+c) - b(a-c) 

= ab + ac - ab + bc

= ac + bc

= c(a + b) (=VP)

2)a (b - c)- a (b+d)= - a (c+d)

VT= a (b - c)- a (b+d)

= ab - ac - ab - ad

= -ac - ad

= -a(c + d) (=VP)

23 tháng 1 2018

a) Sửa đề: (a - b) + (c + d) - (a - c) \(\rightarrow\) (a - b) + (c + d) - (a + c)

(a - b) + (c + d) - (a + c)

= (a + c) - (b + d) - (a + c)

= 0 - (b + d)

= -(b + d)

Vậy...

b) (a - b) - (c - d) + (b + c)

= (a + d) - (b + c) + (b + c)

= a + d

Vậy...

a,         a(b+c)-a(b+d)=a.b+a.c-a.b-a.d=(a.b-a.b)+(a.c-a.d)=0+a(c-d)=a(c-d)

b,         a(b-c)+a(d+c)=a.b-a.c+a.d+a.c=(a.b+a.d)+(a.c-a.c)=a(b+d)-0=a(b+d)

Bài làm

a) Biến đổi vế trái, ta có:

VT = a( b + c ) - a( b + d )

= ab + ac - ab - ad

= ac - ad

= a( c - d ) = VP

Vậy a( b + c ) - a( b + d ) = a( c - d ) ( đpcm )

b) Biến đổi vế trái, ta có:

VT = a( b - c ) + a( d + c ) 

= ab - ac + ad + ac

= ab + ad

= a( b + d ) = VP

Vậy a( b - c ) + a( d + c ) = a( b + d ) ( đpcm )

c) Biến đổi vế trái, ta có:

VT = a( b - c ) - a( b + d ) 

= ab - ac - ab - ad

= -a( c + d ) = VP

Vậy a( b - c ) - a( b + d ) = a( c + d )

# Học tốt #

25 tháng 1 2017

Mik ko viết lại đề:

a, = a - b + c - a - c = ( a- a) + ( c- c) + b = b

b, = a + b - b + a + c = ( a + a) + ( b - b) + c = 2a + c

c, = -a -b + c + a - b -c = ( -a + a) + ( -b -b) + ( c - c) = - 2b

d, = ab + ac - ab - ad  = ac - ad = a(c - d)

e, = ab - ac + ad + ac = ab + ad = a( b + d)

Nguyen Thu Ha học giỏi thế

Làm đúng rồi

Ủng hộ nha