K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2021

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{3b}=\dfrac{b}{3c}=\dfrac{c}{3d}=\dfrac{d}{3a}=\dfrac{a+b+c+d}{3b+3c+3d+3x}=\dfrac{a+b+c+d}{3.\left(a+b+c+d\right)}=\dfrac{1}{3}\\ \Rightarrow a=\dfrac{1}{3}.3b=b\\ \Rightarrow b=\dfrac{1}{3}.3c=c\\ \Rightarrow c=\dfrac{1}{3}.3d=d\\ \Rightarrow d=\dfrac{1}{3}.3a=a\) 

\(\text{a=b=c=d}\)

Tick cho mình nhé

20 tháng 2 2022

\(\dfrac{1}{a+b}+\dfrac{1}{a+c}+\dfrac{1}{b+c}+\dfrac{1}{b+c}\ge\dfrac{16}{2a+3b+3c}\)

\(\dfrac{1}{b+c}+\dfrac{1}{a+b}+\dfrac{1}{a+c}+\dfrac{1}{a+c}\ge\dfrac{16}{2b+3a+3c}\)

\(\dfrac{1}{a+c}+\dfrac{1}{b+c}+\dfrac{1}{a+b}+\dfrac{1}{a+b}\ge\dfrac{16}{2c+3a+3b}\)

cộng tất cả lại ta được \(4.2017\ge16.\left(\dfrac{1}{2a+3b+3c}+\dfrac{1}{2b+3a+3c}+\dfrac{1}{2c+3a+3b}\right)< =>P\le\dfrac{2017}{4}\)

dấu bằng xảy ra khi \(\left\{{}\begin{matrix}\dfrac{1}{a+b}=\dfrac{1}{b+c}=\dfrac{1}{a+c}\\\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}=2017\end{matrix}\right.< =>\left\{{}\begin{matrix}a=b=c\\\dfrac{3}{2a}=\dfrac{3}{2b}=\dfrac{3}{2c}=2017\end{matrix}\right.< =>a=b=c=\dfrac{3}{4034}}\)

20 tháng 2 2022

mấy cái bất đẳng thức ở đầu là như nào v ạ

13 tháng 1 2022

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a+b-3c}{c}=\dfrac{b+c-3a}{a}=\dfrac{c+a-3b}{b}=\dfrac{a+b-3c+b+c-3a+c+a-3b}{c+a+b}=\dfrac{-\left(a+b+c\right)}{a+b+c}=-1\)

\(\dfrac{a+b-3c}{c}=-1\Rightarrow a+b-3c=-c\Rightarrow a+b-2c=0\left(1\right)\)

\(\dfrac{b+c-3a}{a}=-1\Rightarrow b+c-3a=-a\Rightarrow b+c-2a=0\left(2\right)\)

\(\dfrac{c+a-3b}{b}=-1\Rightarrow a+c-3b=-b\Rightarrow a+c-2b=0\left(3\right)\)

Từ (1), (2) ta có:\(a+b-2c=b+c-2a\Rightarrow3a=3c\Rightarrow a=c\left(4\right)\)

Từ (1), (3) ta có:\(a+b-2c=a+c-2b\Rightarrow3b=3c\Rightarrow b=c\left(5\right)\)

Từ (4), (5)\(\Rightarrow a=b=c\)

14 tháng 3 2021

Áp dụng bđt Schwarz ta có:

\(P=\dfrac{a^4}{2ab+3ac}+\dfrac{b^4}{2cb+3ab}+\dfrac{c^4}{2ac+3bc}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{5\left(ab+bc+ca\right)}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{5\left(a^2+b^2+c^2\right)}=\dfrac{1}{5}\).

Đẳng thức xảy ra khi và chỉ khi \(a=b=c=\dfrac{\sqrt{3}}{3}\).

4 tháng 9 2021

Ủa bị lỗi hả:v? undefined

AH
Akai Haruma
Giáo viên
13 tháng 4 2021

Lời giải:

Bạn nhớ tới bổ đề sau: Với $a,b>0$ thì $a^3+b^3\geq ab(a+b)$.

Áp dụng vào bài:

$5a^3-b^3\leq 5a^3-[ab(a+b)-a^3]=6a^3-ab(a+b)$

$\Rightarrow \frac{5a^3-b^3}{ab+3a^2}\leq \frac{6a^3-ab(a+b)}{ab+3a^2}=\frac{6a^2-ab-b^2}{3a+b}=\frac{(3a+b)(2a-b)}{3a+b}=2a-b$

Tương tự:

$\frac{5b^3-c^3}{bc+3b^2}\leq 2b-c; \frac{5c^3-a^3}{ca+3c^2}\leq 2c-a$

Cộng theo vế:

$\Rightarrow \text{VT}\leq a+b+c=3$

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$