K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2017

\(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

Ta thấy:\(2\) vế luôn dương với mọi \(a,b\)

Bình phương 2 vế của BĐT ta có:

\(\left(\left|a\right|+\left|b\right|\right)^2\ge\left(\left|a+b\right|\right)^2\)

\(\Leftrightarrow a^2+2\left|ab\right|+b^2\ge a^2+2ab+b^2\)

\(\Leftrightarrow2\left|ab\right|\ge2ab\Leftrightarrow\left|ab\right|\ge ab\) (luôn đúng)

Đẳng thức xảy ra khi \(ab\ge0\)

Lưu ý: Copy lời giải nhớ ghi nguồn.

26 tháng 3 2017

cam on nhahihi

2 tháng 2 2019

Bài 1:

a) Min A = -10 tại x = -1

b) Min B = 2020 tại x = 2023 hoặc tại x = 3

bài 2 đây ko bk lm! xl

6 tháng 2 2019

cx thg xiaoliz

Bt kết quả nhưng éo bt trình bày

thíc thì tao lm cho

16 tháng 12 2022

a: \(P=\dfrac{a+3}{a}\cdot\dfrac{a^2-9-6a+18}{\left(a-3\right)\left(a+3\right)}\)

\(=\dfrac{\left(a-3\right)^2}{a\left(a-3\right)}=\dfrac{a-3}{a}\)

b: Để P=-2 thì -2a=a-3

=>-3a=-3

=>a=1

c: Để P nguyên thì a-3 chia hết cho a

=>-3 chia hết cho a

mà a<>0; a<>3; a<>-3

nên \(a\in\left\{1;-1\right\}\)

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

\(\frac{2a+b+c}{a}=\frac{2b+c+a}{b}=\frac{2c+a+b}{c}=\frac{2a+b+c+2b+c+a+2c+a+b}{a+b+c}=\frac{4\left(a+b+c\right)}{a+b+c}=4\)

\(\Rightarrow\frac{2a+b+c}{a}=4\Rightarrow2a+b+c=4a\Rightarrow b+c=4a-2a=2a\)

          \(\frac{2b+c+a}{b}=4\Rightarrow2b+c+a=4b\Rightarrow c+a=4b-2b=2b\)

          \(\frac{2c+a+b}{c}=4\Rightarrow2c+a+b=4c\Rightarrow a+b=4c-2c=2c\)   

Suy ra \(P=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2c.2a.2b}{abc}=\frac{8abc}{abc}=8\)

Vậy P=8

9 tháng 9 2018

a ) CM : \(a^4+b^4\ge a^3b+b^3a\)

Giả sử điều cần c/m là đúng

\(\Rightarrow a^4+b^4-a^3b-b^3a\ge0\)

\(\Rightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Rightarrow\left(a^3-b^3\right)\left(a-b\right)\ge0\)

\(\Rightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

Ta có : \(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\\a^2+ab+b^2=\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\ge0\end{matrix}\right.\)

\(\Rightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

\(\Rightarrow a^4+b^4-a^3b-b^3a\ge0\)

\(\Rightarrow a^4+b^4\ge a^3b+b^3a\)

\(\Rightarrow2\left(a^4+b^4\right)\ge a^4+a^3b+b^4+b^3a\)

\(\Rightarrow2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)

\(\left(đpcm\right)\)

9 tháng 9 2018

b ) \(\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)

\(=a^4+a^3b+a^3c+b^3a+b^4+b^3c+c^3a+c^3b+c^4\)

\(=\left(a^4+b^4+c^4\right)+\left(a^3b+b^3a\right)+\left(b^3c+c^3b\right)+\left(a^3c+c^3a\right)\)

CMTT như a ) : \(\left\{{}\begin{matrix}a^4+b^4\ge a^3b+b^3a\\b^4+c^4\ge b^3c+c^3b\\a^4+c^4\ge a^3c+c^3a\end{matrix}\right.\)

\(\Rightarrow2\left(a^4+b^4+c^4\right)\ge a^3b+b^3a+b^3c+c^3b+a^3c+c^3a\)

\(\Rightarrow3\left(a^4+b^4+c^4\right)\ge a^4+b^4+c^4+a^3b+b^3a+b^3c+c^3b+a^3c+c^3a\)

\(\Rightarrow3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\left(đpcm\right)\)

18 tháng 10 2018

bạn chữa đi bạn

7 tháng 10 2017

Ta chứng minh bổ đề: Với \(|x|\ge2\)thì \(2x^2-4x\ge0\)

Với \(x\le-2\)thì nó đúng

Xét \(x\ge2\)thì ta có:

\(2x\left(x-2\right)\ge0\)(đúng)

Quay lại bài toán:

\(\left(a^2+1\right)\left(b^2+1\right)\ge\left(a+b\right)\left(ab+1\right)+5\)

\(\Leftrightarrow4a^2b^2+4a^2+4b^2-4a^2b-4ab^2-4a-4b-16\ge0\)

\(\Rightarrow VT=\left(a^2b^2-4a^2b+4a^2\right)+\left(a^2b^2-4b^2a+4b^2\right)+\left(a^2b^2-16\right)+\left(\frac{a^2b^2}{2}-4a\right)+\left(\frac{a^2b^2}{2}-4b\right)\)

\(\ge\left(ab-2a\right)^2+\left(ab-2b\right)^2+\left(a^2b^2-16\right)+\left(2a^2-4a\right)+\left(2b^2-4b\right)\ge0\)

Vậy ta có ĐPCM

7 tháng 10 2017

ai tra loi giup voi

18 tháng 1 2019

Bài 1 : Áp dụng BĐT trong tam giác ta có :

\(\left\{{}\begin{matrix}a< b+c\\b< c+a\\c< a+b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a^2-\left(b-c\right)^2\le a^2\\b^2-\left(c-a\right)^2\le b^2\\c^2-\left(a-b\right)^2\le c^2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(a+b-c\right)\left(a-b+c\right)\le a^2\\\left(b-c+a\right)\left(b+c-a\right)\le b^2\\\left(c-a+b\right)\left(c+a-b\right)\le c^2\end{matrix}\right.\)

Nhân từng vế BĐT ta được :

\(\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)\le abc\) ( đpcm )

Bài 2 : Theo BĐT Cô - si ta có :

\(\left\{{}\begin{matrix}a+b\ge2\sqrt{ab}\\b+c\ge2\sqrt{bc}\\c+a\ge2\sqrt{ca}\end{matrix}\right.\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

\(\Rightarrow\dfrac{1}{8}\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge abc\) (1)

Theo câu 1 ta lại có :

\(abc\ge\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)\)

\(\Leftrightarrow abc\ge\sqrt{abc\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)}\) (2)

Từ (1) và (2) \(\Rightarrow\dfrac{1}{8}\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\sqrt{abc\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)}\)

5 tháng 12 2018

@Akai Haruma

23 tháng 9 2017

Áp dụng bất đẳng thức Côsi ta có:

\("a+b+c""ab+bc+ac"\le\frac{8}{9}"a+b""b+c""c+a"\)

\(\Leftrightarrow a"b-c"^2+b"c-a"^2+c"a-b"^2\ge0\)luôn đúng

P/s: Máy mk lác dấu ngoặc đơn rồi nên dùng tạm dấu ngoặc kép thông cảm cho mk nhé

30 tháng 8 2020

chủ acc cũ gà thật:vv

Xét \(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\)