K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2021

áp dụng BDT AM-GM

\(=>a+b\ge2\sqrt{ab}\)

\(=>b+c\ge2\sqrt{bc}\)

\(=>c+a\ge2\sqrt{ca}\)

\(=>VT\ge2.2.2\sqrt{ab.bc.ca}=8abc\left(dpcm\right)\)

dấu"=" xảy ra<=>a=b=c

8 tháng 7 2021

Áp dụng bất đẳng thức AM-GM:

\(a+b\ge2\sqrt{ab}\left(1\right)\\ a+c\ge2\sqrt{ac}\left(2\right)\\ b+c\ge2\sqrt{bc}\left(3\right)\)

Nhân vế theo vế \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow\left(a+b\right)\left(a+c\right)\left(b+c\ge\right)8abc\) ( với \(a,b,c\ge0\) )

23 tháng 4 2017

tui làm đc là phải tịk nha!

a+b+c=1\(\Rightarrow\)1-a=b+c;1-b=c+a;1-c=a+b \(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)=\)(a+b)(b+c)(c+a)\(\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}\)=8.abc\(\ge8\).dấu ''=''xảy ra khi một tong 3 số a;b;c là 1 2 số còn lại bằng 0

23 tháng 4 2017

Không có giá trị a,b,c thỏa mãn khi a.b,c là số dương và tổng bằng 1

22 tháng 4 2017

Số abc là 176

21 tháng 4 2017

Đề phải cho \(a,b,c\) là các số dương nữa :)

Giải:

Áp dụng BĐT Cauchy - Schwarz

\(\Rightarrow\hept{\begin{cases}a+b\ge2\sqrt{ab}\\b+c\ge2\sqrt{bc}\\c+a\ge2\sqrt{ca}\end{cases}}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\) (Đpcm)

Đẳng thức xảy ra \(\Leftrightarrow a=b=c=1\)

27 tháng 5 2019

Bổ sung đk a,b,c > 0

BĐT \(\Leftrightarrow a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2\ge0\) (đúng)

\(\Rightarrow\) Q.E.D

Dấu "=" xảy ra tại a =b =c 

26 tháng 4 2016

ta có : \(a+b>=2\sqrt{ab};b+c>=2\sqrt{bc};c+a>=2\sqrt{ca}\)

=> (a+b)(b+c)(c+a)>=\(2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}=8\sqrt{a^2b^2c^2}=8abc\)

26 tháng 4 2016

Bạn Anh làm đúng

2 tháng 5 2017

Áp dụng bất đẳng thức Cauchy - Schwarz cho 3 số dương a;b;c ta có :

\(a+b\ge2\sqrt{ab}\) (dấu "=" xảy ra \(\Leftrightarrow a=b\) )

\(b+c\ge2\sqrt{bc}\) (dấu "=" xảy ra \(\Leftrightarrow b=c\) )

\(c+a\ge2\sqrt{ca}\) (dấu "=" xảy ra \(\Leftrightarrow a=c\) )

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\sqrt{a^2b^2c^2}=8abc\) (đpcm)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

15 tháng 5 2018

Dùng BĐT phụ : \(\left(x+y\right)^2\ge4xy\)

Ta có : \(\left(a+b\right)^2\ge4ab\) ; \(\left(b+c\right)^2\ge4bc\); \(\left(c+a\right)^2\ge4ca\)

\(\Rightarrow\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\ge64a^2b^2c^2=\left(8abc\right)^2\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\left(dpcm\right)\)

Dấu "=" xảy ra khi a = b = c

NV
13 tháng 2 2020

\(VT=\left(1-a\right)\left(1-b\right)\left(1-c\right)=\left(b+c\right)\left(a+c\right)\left(a+b\right)\)

\(VT\ge2\sqrt{bc}.2\sqrt{ac}.2\sqrt{ab}=8abc\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

AH
Akai Haruma
Giáo viên
13 tháng 2 2020

Lời giải:

Vì $A+B+C=1$ ta có:

$(1-A)(1-B)(1-C)=(B+C)(C+A)(A+B)$

Áp dụng BĐT AM-GM cho các số dương:

$B+C\geq 2\sqrt{BC}; C+A\geq 2\sqrt{CA}; A+B\geq 2\sqrt{AB}$

$\Rightarrow (1-A)(1-B)(1-C)=(B+C)(C+A)(A+B)\geq 2\sqrt{BC}.2\sqrt{CA}.2\sqrt{AB}$

hay $(1-A)(1-B)(1-C)\geq 8ABC$ (đpcm)

Dấu "=" xảy ra khi $A=B=C=\frac{1}{3}$

18 tháng 7 2015

áp dụng bất đẳng thức cô-si với 2 số dương.

Ta có 

 \(a+b\ge2\sqrt{ab}\)

 \(b+c\ge2\sqrt{bc}\)

\(c+a\ge2\sqrt{ca}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\sqrt{\left(abc\right)^2}=8abc\)(vì a,b,c dương)