giả sử \(3^n+63=k^2\)
- Nếu n lẻ \(\Rightarrow3^n+63\equiv3+63\equiv2\left(mod4\right)\Rightarrow k^2\equiv2\left(mod4\right)\) (loại)
Đặt n=2m ( \(m\inℕ\)
- Nếu n chẵn \(\Rightarrow k^2-3^{2m}=63\Leftrightarrow\left(k-3^m\right)\left(k+3^m\right)=7.9\)
Vì \(k+3^m=k-3^m\left(mod3\right)\Rightarrow k+3^m,k-3^m\) đều chia hết cho 3
Lại có: \(k-3^m< k+3^m\Leftrightarrow\hept{\begin{cases}k-3^m=3\\k+3^m=3.7\end{cases}}\)
Từ đó tìm đc k=12, m=2 => n=4
.Ta có : là tiếp tuyến của (O)
Ta có :
là trung điểm AC
Dễ có IC là tiếp tuyến của đường tròn nên IC2 = IB.IE (1)
Theo tính chất của góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung, ta có: ^EBA = ^BDA
Lại có: ^BDA = ^DAC (BD//AC, hai góc so le trong)
Từ đó suy ra ^EBA = ^DAC
∆AIE và ∆BIA có: ^AIB là góc chung, ^EBA = ^DAC (cmt) nên ∆AIE ~ ∆BIA (g.g)
=>\(\frac{IA}{IE}=\frac{IB}{IA}\Rightarrow IA^2=IB.IE\)(2)
Từ (1) và (2) suy ra IA2 = IC2 hay IA = IC
Vậy I là trung điểm của AC (đpcm)
Cho hai đường tròn (O) và (O’) ở ngoài nhau. Đường nối tâm OO’ cắt các đường tròn (O) và (O’) tại các điểm A, B, C, D theo thứ tự đó trên đường thẳng. Kẻ tiếp tuyến chung ngoài EF, E ∈ (O), F ∈ (O’). Gọi M là giao điểm của AE và DF, N là giao điểm của EB và FC. Chứng minh rằng:
a) MENF là hình chữ nhật.
b) MN vuông góc với AD.
c) ME.NA = MF.MD.
Đọc tiếp...Được cập nhật 16 giờ trước (16:28)
a) Vì AB là đường kính \(\Rightarrow\widehat{AEB}=90^o\)
Vì CD là đường kính \(\Rightarrow\widehat{CFD}=90^o\)
Ta có: EO// FO' nên \(\widehat{EOB}+\widehat{CO'F}=180^O\)
Mà \(\widehat{EAB}=\frac{1}{2}\widehat{EOB},\widehat{CDF}=\frac{1}{2}\widehat{CO'F}\)
\(\Rightarrow\widehat{EAB}+\widehat{CDF}=90^O\Rightarrow\widehat{\text{EMF}}=90^O\)
=> tứ giác MENF là hcn( đpcm)
b)Ta có: \(\widehat{N\text{EF}}=\widehat{ENM}\) ( tứ giác MENF là hcn)
\(\widehat{N\text{EF}}=\widehat{BAE}\) (cùng chắn cung EB)
=> \(\widehat{EAB}=\widehat{BNM}\)
=> tam giác MEN ~ tam giác MCA
=> MN vuông góc với AD
c) Ta có: \(ME.MA=MK.MN\) ( K là giao của MN và AD)
\(MK.MN=MF.MD\)
\(\Rightarrow ME.MA=MF.MD\)
Kẻ tiếp tuyến tại A. Gọi E là giao điểm của tiếp tuyến tại A với dây BC.
Ta có: EM=EA và \(\widehat{EAM}=\widehat{EMA}\)( tính chất 2 tiếp tuyến cắt nhau)
hay \(\widehat{EAB}+\widehat{BAM}=\widehat{ECA}+\widehat{CAM}\)
Mà \(\widehat{EAB}=\widehat{ECA}\)
=> \(\widehat{BAM}=\widehat{CAM}\) hay AM là phân giác góc BAC( đpcm)
Cho đường tròn (O), tiếp tuyến của đường tròn tại hai điểm phân biệt A, B cắt nhau tại M. Từ A kẻ đường thẳng song song với MB, cắt đường tròn (O) tại C. MC cắt đường tròn (O) tại E. Các tia AE và MB cắt nhau tại K. Chứng minh:
a) MK2 = AK.EK;
b) MK = KB.
Đọc tiếp...Được cập nhật 17 giờ trước (15:29)
(Tính chất phương tích của một điểm với một đường tròn) Cho đường tròn (C) tâm O với I là trung điểm của dây AB không đi qua O. Một đường thẳng thay đổi đi qua A cắt đường tròn (C1) tâm O bán kính OI tại P và Q. Chứng minh rằng:
a) Tích AP.AQ không đổi.
b) Đường tròn ngoại tiếp tam giác BPQ luôn đi qua một điểm cố định khác B.
Đọc tiếp...Được cập nhật 17 giờ trước (15:30)
Ở hình vẽ trên, Bx là tiếp tuyến, CD // BE, $\widehat{DME}=40°$. Tính số đo $\widehat{xBC}$.
Đọc tiếp...Được cập nhật 17 giờ trước (15:30)
Ở hình vẽ trên, AB là tiếp tuyến chung của (O) và (O'). Tính số đo góc AKB biết số đo góc AMB bằng 50°.
Đọc tiếp...Được cập nhật 17 giờ trước (15:30)
Cho hai đường tròn bằng nhau (O) và (O') cắt nhau tại hai điểm A và B. Kẻ các đường kính AOC, AO'D. Gọi E là giao điểm thứ hai của AC với đường tròn (O').
a) So sánh các cung nhỏ BC, BD.
b) Chứng mình rằng B là điểm chính giữa của cung EBD (tức là điểm B chia cung EBD thành hai cung bằng nhau: BE = BD )
Đọc tiếp...Được cập nhật 17 giờ trước (15:30)
cần hình ib mình mình gửi cho nhé =)
a)
Vì (O) và (O′) cắt nhau tại hai điểm A và B nên OO′ vuông AB ( định lý )
- Xét tam giác ADC
Có OO′ là đường trung bình ( vì O là trung điểm AC , O′ là trung điểm của AD)
Nên => OO′ // CD
=> AB vuông CD ( Quan hệ từ vuông góc đến song song )
Xét tam giác ADC
Có AC = AD ( vì hai đường tròn (O) và (O′) có cùng bán kính )
=> Tam giác ACD cân tại A có AB là đường cao nên AB cũng là đường trung tuyến
=> BC = BD hay cung BC = cung BD (vì (O) và (O′) là hai đường tròn bằng nhau )
b) Xét đường tròn (O′) có A , E , D cùng thuộc đường tròn và AD là đường kính nên tam giác AED vuông tại E
\(\Rightarrow DE\perp AC\Rightarrow\widehat{DEC}=90^o\)
- Xét \(\Delta DEC\)vuông tại E có B là trung điểm DC ( cmt )
\(\Rightarrow EB=\frac{DC}{2}=BD=EB\)
=> Cung EB = cung BD ( định lý )
Do đó B là điểm chính giữa cung ED
Ta có: \(4a^2+a\sqrt{2}-\sqrt{2}=0\Leftrightarrow a^2+\frac{\sqrt{2}}{4}a-\frac{\sqrt{2}}{4}=0\Leftrightarrow a^2=\frac{\sqrt{2}}{4}-\frac{\sqrt{2}}{4}a\)\(\Leftrightarrow a^4=\frac{1}{8}+\frac{1}{8}a^2-\frac{1}{4}a\Leftrightarrow a^4+a+1=\frac{1}{8}a^2+\frac{3}{4}a+\frac{9}{8}=\frac{1}{8}\left(a+3\right)^2\)\(\Rightarrow\sqrt{a^4+a+1}=\frac{1}{2\sqrt{2}}\left(a+3\right)\)(Do a > 0)
\(\Rightarrow\sqrt{a^4+a+1}-a^2=\frac{1}{2\sqrt{2}}\left(a+3\right)-\left(\frac{\sqrt{2}}{4}-\frac{\sqrt{2}}{4}a\right)=\frac{\sqrt{2}}{2}a+\frac{\sqrt{2}}{2}\)
Suy ra \(\frac{a+1}{\sqrt{a^4+a+1}-a^2}=\frac{a+1}{\frac{\sqrt{2}}{2}\left(a+1\right)}=\sqrt{2}\)
giải hệ phương trình:\(\hept{\begin{cases}\sqrt[3]{x+1}+\sqrt{1-y}=2\\x^2+9y+xy^3=y^4+xy+9x\end{cases}}\)
Đọc tiếp...Được cập nhật 17 giờ trước (15:31)
a, vì \(AD\) là tia phân giác của góc \(\widehat{BAC}\) \(\Rightarrow\widehat{BAD}=\widehat{EAC}\)
mà \(\widehat{ABD}=\widehat{ABC}=\widehat{AEC}\)
\(\Rightarrow\Delta ABD~\Delta AEC\) (g-g)
\(\Rightarrow\frac{AB}{AE}=\frac{AD}{AC}\Leftrightarrow AB.AC=AE.AD\)
b, Ta có :
\(\widehat{EBD}=\widehat{EBC}=\widehat{EAC}=\widehat{BAE}\)
\(\Rightarrow\Delta EBD~\Delta EAB\)(g-g)
\(\Rightarrow\frac{EB}{EA}=\frac{ED}{EB}\Leftrightarrow ED.EA=EB^2\)
...
Dưới đây là những câu có bài toán hay do Online Math lựa chọn.
....