Giúp tôi giải toán và làm văn


ミ★๖ۣۜBăηɠ ๖ۣۜBăηɠ ²ƙ⁶★彡 48 phút trước
Báo cáo sai phạm

Bài này em cũng không chắc lắm nha :)

Đặt \(S=x+y;P=xy\)

Ta có: \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=S^3-3PS\)

Ta có hệ: \(\hept{\begin{cases}S^3-3PS+P^3=17\\S+P=5\end{cases}}\)

Lại đặt: \(S+P=S_1;SP=P_1\) ta có:

\(S^3+P^3=\left(S+P\right)^3-3SP\left(S+P\right)=S_1^2-3P_1S_1\)

Ta có hệ: \(\hept{\begin{cases}S^3_1-3P_1S_1-3P_1=17\\S_1=5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}S_1=5\\P_1=6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}S=2\\P=3\end{cases}}\) Hoặc \(\hept{\begin{cases}S=3\\P=2\end{cases}}\)

Vì \(S^2\ge4P\) nên chỉ có \(\hept{\begin{cases}S=3\\P=2\end{cases}}\)

Thỏa mãn \(\Rightarrow\hept{\begin{cases}x+y=3\\xy=2\end{cases}}\)

\(\Rightarrow x,y\) là nghiệm của pt:

\(X^2+3X+2=0\Leftrightarrow\orbr{\begin{cases}X=1\\X=2\end{cases}}\)

Nghiệm của hệ là: \(\left(1;2\right);\left(2;1\right)\)

Đọc tiếp...
ミ★๖ۣۜBăηɠ ๖ۣۜBăηɠ ²ƙ⁶★彡 1 giờ trước (10:54)
Báo cáo sai phạm

\(Đk:-1\le x\le3\)

Đặt: \(\hept{\begin{cases}u=\sqrt{x+1}\\v=\sqrt{3-x}\end{cases}}\) Ta suy ra:

\(u^2=x+1\)

\(3u^2-2v^2=5x-3\)

\(4u^2-v^2=5x+1\)

\(u^2+v^2=4\)

Pt đã cho trở thành:

\(2\left(3u^2-2v^2\right)+5uv^2=3\left(4u^2-v^2\right)\Leftrightarrow6u^2\left(2-u\right)=v^2\left(u+3\right)\)

Thay \(v^2=4-u\) ta thu được pt:

\(2\left(3u^2-2v^2\right)+5uv^2=3\left(4u^2-v^2\right)\)

\(\Leftrightarrow6u^2\left(2-u\right)=\left(4-u^2\right)\left(u+3\right)\Leftrightarrow\orbr{\begin{cases}u=2\\u=\frac{5+\sqrt{145}}{10}\end{cases}}\)

Từ đó tìm đc các nghiệm của pt là: \(\orbr{\begin{cases}x=3\\x=\frac{7+\sqrt{145}}{10}\end{cases}}\)

Đọc tiếp...
ミ★๖ۣۜBăηɠ ๖ۣۜBăηɠ ²ƙ⁶★彡 2 giờ trước (10:28)
Báo cáo sai phạm

Ta viết lại phương trình thành:

\(\left(2x-1\right)^3-\left(x^2-x-1\right)=\left(x+1\right)\sqrt[3]{\left(x+1\right)\left(2x-1\right)+x^2-x-1}\)

Đặt: \(a=2x-1;b=\sqrt[3]{\left(x+1\right)\left(2x-1\right)+x^2-x-1}=\sqrt[3]{3x^2-2}\) ta thu được hệ phương trình:

\(\hept{\begin{cases}a^3-\left(x^2-x+1\right)=\left(x+1\right)b\\b^3-\left(x^2-x+1\right)=\left(x+1\right)a\end{cases}}\) 

Trừ 2 pt của hệ cho nhau ta được: \(\left(a-b\right)\left(a^2+ab+b^2+x+1\right)=0\)

Trường hợp 1: \(a=b\) ta có:

\(2x-1=\sqrt[3]{3x^2-2}\Leftrightarrow8x^3-15x^2+6x+1=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{8}\end{cases}}\)

Trường hợp 2: \(a^2+ab+b^2+x+1=0\Leftrightarrow\left(a+\frac{b}{2}\right)^2+\frac{3}{4}\left(2x-1\right)^2+x+1=0\)

\(\Leftrightarrow4\left(a+\frac{b}{2}\right)^2+4x^2+2\left(2x-1\right)^2+5=0\left(vn\right)\)

Vậy pt có 2 nghiệm là: \(x=1;x=-\frac{1}{8}\)

Đọc tiếp...
Kudo Shinichi 2 giờ trước (10:01)
Báo cáo sai phạm

Áp dụng bất đẳng thức AM - GM ta có :

\(a-\frac{a^2}{a+b^2}=\frac{ab^2}{a+b^2}\le\frac{ab^2}{2b\sqrt{a}}=\frac{b\sqrt{a}}{2}\)

Tương tự cho các BĐT còn lai cũng có : 

\(b-\frac{b^2}{b+c^2}\le\frac{c\sqrt{b}}{2};c-\frac{c^2}{c+a^2}\le\frac{a\sqrt{c}}{2}\)

Cộng theo vế các BĐT trên :
\(\frac{a^2}{a+b^2}+\frac{b^2}{b+c^2}+\frac{c^2}{c+a^2}\ge3-\frac{1}{2}\left(b\sqrt{a}+c\sqrt{b}+a\sqrt{c}\right)\)

\(\ge3-\frac{1}{2}\sqrt{\left(a+b+c\right)\left(ab+bc+ca\right)}\)

\(\ge3-\frac{1}{2}\sqrt{\left(a+b+c\right).\frac{\left(a+b+c\right)^2}{3}}=3-\frac{3}{2}=\frac{3}{2}\)

Đẳng thức xảy ra khi \(a=b=c=1\)

Chúc bạn học tốt !!!

Đọc tiếp...
Kudo Shinichi 2 giờ trước (9:41)
Báo cáo sai phạm

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow VT\ge3\sqrt[3]{\left[\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)\right]^4}\)

\(\Rightarrow VT\ge3\left(\sqrt[3]{1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{abc}}\right)^4\left(1\right)\)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\\\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge3\sqrt[3]{\frac{1}{a^2b^2c^2}}\end{cases}}\)

\(\Rightarrow1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{abc}\ge1+3\sqrt[3]{\frac{1}{abc}}\)

\(+3\sqrt[3]{\frac{1}{a^2b^2c^2}}+\frac{1}{abc}\)

\(\Rightarrow1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{abc}\ge\left(1+\frac{1}{\sqrt[3]{abc}}\right)^3\)

\(\Rightarrow3\left(\sqrt[3]{1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{abc}}\right)^4\)

\(\ge3\left(1+\frac{1}{\sqrt[3]{abc}}\right)^4\)

\(\left(2\right)\)

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow\sqrt[3]{abc}\le\frac{abc+1+1}{3}=\frac{abc+2}{3}\)

\(\Rightarrow1+\frac{1}{\sqrt[3]{abc}}\ge1+\frac{3}{abc+2}\)

\(\Rightarrow3\left(1+\frac{1}{\sqrt[3]{abc}}\right)^4\ge3\left(1+\frac{3}{abc+2}\right)^4\left(3\right)\)

Từ (1) , (2) và (3) 

\(\Rightarrow VT\ge3\left(1+\frac{3}{abc+2}\right)^4\)

\(\Leftrightarrow\left(1+\frac{1}{a}\right)^4+\left(1+\frac{1}{b}\right)^4+\left(1+\frac{1}{c}\right)^4\ge3\left(1+\frac{3}{2+abc}\right)^4\left(đpcm\right)\)

Chúc bạn học tốt !!!

Đọc tiếp...
ミ★๖ۣۜBăηɠ ๖ۣۜBăηɠ ²ƙ⁶★彡 3 giờ trước (9:26)
Báo cáo sai phạm

Áp dụng BĐT Cô-si cho 3 số dương ta có:

\(\left(1+\frac{1}{a}\right)^4+\left(1+\frac{1}{b}\right)^4+\left(1+\frac{1}{c}\right)^4\ge3\left(\sqrt[3]{\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)}\right)^4\)

Ta chứng minh: \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)\ge\left(1+\frac{3}{2+abc}\right)^3\left(1\right)\)

Theo BĐT Cô - si ta có:

\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)=1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{abc}\)

\(\ge1+\frac{3}{\sqrt[3]{abc}}+\frac{3}{\sqrt[3]{\left(abc\right)^2}}+\frac{1}{abc}=\left(1+\frac{1}{\sqrt[3]{abc}}\right)^3\ge\left(1+\frac{3}{2+abc}\right)^3\)

(Vì \(abc+2=abc+1+1\ge3\sqrt[3]{abc}\))

Vậy \(\left(1\right)\) được chứng minh \(\Rightarrow BĐT\) đúng \(\forall a,b,c>0\)

Đẳng thức xảy ra \(\Leftrightarrow a=b=c=1\)

Đọc tiếp...
Nguyễn Trần Khánh Đan 4 tháng 5 2019 lúc 14:35
Báo cáo sai phạm

Để hệ có nghiệm duy nhất thì: \(\frac{3}{m}\ne\frac{m}{-1}\) 

\(\Leftrightarrow m^2\ne-3\)(1)

Vì (1) luôn đúng với mọi m

=> Hệ luôn có nghiệm duy nhất

=.= hk tốt!!

Đọc tiếp...
Nguyễn Trần Khánh Đan 5 tháng 5 2019 lúc 8:58
Báo cáo sai phạm

À ko,để hệ có nghiệm duy nhất thì: \(\frac{a}{a^'}\ne\frac{b}{b^'}\) ( cái này có trong sgk tập 2 trang 25 nha bn)

Nếu ko thì bạn cũng có thể tìm ra phương trình trung gian rồi xét tiếp là đc :))) 

Đọc tiếp...
Nguyễn Thị Trà My 4 tháng 5 2019 lúc 20:38
Báo cáo sai phạm

bạn có thể biến đổi sao nó ra nhưu v k? rút y? thay vào pt (1).. ? Mình hơi lan man phần này á @@ bạn giúp mình với

Đọc tiếp...
Đinh Chí Công 15 tháng 10 2017 lúc 9:05
Báo cáo sai phạm

Gọi k là một giá trị của B ta có:
(3x² - 8x + 6)/(x² - 2x + 1) = k
<=> 3x² - 8x + 6 = k(x² - 2x + 1)
<=> (3 - k)x² - (8 - 2k)x + 6 - k = 0 (*)
Ta cần tìm k để PT (*) có nghiệm
Xét: ∆ = (8 - 2k)² - 4(3 - k)(6 - k) = 64 - 32k + 4k² - 4(18 - 9k + k²) = 4k - 8
Để PT (*) có nghiệm thì ∆ ≥ 0 <=> 4k - 8 ≥ 0 <=> k ≥ 2
Dấu "=" xảy ra khi -(8 - 2.2)x + 6 - 2 = 0 <=> -4x + 4 = 0 => x = 1
Vậy B ≥ 2 => GTNN của B = 2 khi x = 1

Đọc tiếp...
Nguyễn Ngọc Mỹ 7 tháng 11 2017 lúc 21:26
Báo cáo sai phạm

Ta có \(\frac{3x^2-8x+6}{x^2-2x+1}\) = \(\frac{2\left(x^2-2x+1\right)+x^2-4x+4}{x^2-2x+1}\) = 2+\(\frac{\left(x-2\right)^2}{\left(x-1\right)^2}\) >= 2 

Dấu "=" xảy ra khi x-2=0 => x=2

Vậy Min = 2 Khi x=2

Đọc tiếp...
Thức Vương 16 tháng 10 2017 lúc 17:59
Báo cáo sai phạm

khi x=2 chứ

Đọc tiếp...
alibaba nguyễn 16 tháng 1 2017 lúc 14:54
Báo cáo sai phạm

Ta có:

\(A=\frac{3x^2-8x+6}{x^2-2x+1}\)

\(\Leftrightarrow A\left(x^2-2x+1\right)=3x^2-8x+6\)

\(\Leftrightarrow\left(3-A\right)x^2+\left(2A-8\right)x+6-A=0\)

Đê pt theo nghiệm x có nghiệm thì

\(\Delta'=\left(A-4\right)^2-\left(3-A\right)\left(6-A\right)\ge0\)

\(\Leftrightarrow A-2\ge0\)

\(\Leftrightarrow A\ge2\)

Vậy GTNN là 2 khi x = 2

Đọc tiếp...
Phan Huy Toàn 29 tháng 7 2017 lúc 16:03
Báo cáo sai phạm

x=2

lời giải mk đang làm

Đọc tiếp...

...

Dưới đây là những câu có bài toán hay do Online Math lựa chọn.

....

Toán lớp 10Đố vuiToán có lời vănToán lớp 11Toán đố nhiều ràng buộcToán lớp 12Giải bằng tính ngượcLập luậnLô-gicToán chứng minhChứng minh phản chứngQui nạpNguyên lý DirechletGiả thiết tạmĐo lườngThời gianToán chuyển độngTính tuổiGiải bằng vẽ sơ đồTổng - hiệuTổng - tỉHiệu - tỉTỉ lệ thuậnTỉ lệ nghịchSố tự nhiênSố La MãPhân sốLiên phân sốSố phần trămSố thập phânSố nguyênSố hữu tỉSố vô tỉSố thựcCấu tạo sốTính chất phép tínhTính nhanhTrung bình cộngTỉ lệ thứcChia hết và chia có dưDấu hiệu chia hếtLũy thừaSố chính phươngSố nguyên tốPhân tích thành thừa số nguyên tốƯớc chungBội chungGiá trị tuyệt đốiTập hợpTổ hợpBiểu đồ VenDãy sốHằng đẳng thứcPhân tích thành nhân tửGiai thừaCăn thứcBiểu thức liên hợpRút gọn biểu thứcSố họcXác suấtTìm xPhương trìnhPhương trình nghiệm nguyênPhương trình vô tỉCông thức nghiệm Vi-etLập phương trìnhHệ phương trìnhBất đẳng thứcBất phương trìnhBất đẳng thức hình họcĐẳng thức hình họcHàm sốHệ trục tọa độĐồ thị hàm sốHàm bậc haiĐa thứcPhân thức đại sốĐạo hàm - vi phânLớn nhất - nhỏ nhấtHình họcĐường thẳngĐường thẳng song songĐường trung bìnhGócTia phân giácHình trònHình tam giácTam giác bằng nhauTam giác đồng dạngĐịnh lý Ta-letTứ giácTứ giác nội tiếpHình chữ nhậtHình thangHình bình hànhHình thoiHình hộp chữ nhậtHình ba chiềuChu viDiện tíchThể tíchQuĩ tíchLượng giácNgữ văn 10Hệ thức lượngViolympicNgữ văn 11Ngữ văn 12Giải toán bằng máy tính cầm tayToán tiếng AnhGiải tríTập đọcKể chuyệnTập làm vănChính tảLuyện từ và câuTiếng Anh lớp 10Tiếng Anh lớp 11Tiếng Anh lớp 12

Có thể bạn quan tâm


Tài trợ

Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web hoc24.vn để được giải đáp tốt hơn.


sin cos tan cot sinh cosh tanh
Phép toán
+ - ÷ × = ∄ ± ⋮̸
α β γ η θ λ Δ δ ϵ ξ ϕ φ Φ μ Ω ω χ σ ρ π ( ) [ ] | /

Công thức: