Lỗi: Trang web OLM.VN không tải hết được tài nguyên, xem cách sửa tại đây.

Hỏi đáp Toán lớp 9


a. ta có 

\(A=\frac{\sqrt{20}-3\sqrt{4}}{\sqrt{14-6\sqrt{5}}}-\frac{\sqrt{20}-\sqrt{28}}{\sqrt{12-2\sqrt{35}}}\)\(\left(\text{ Nhân cả tử và mẫu với }\sqrt{2}\right)\)

\(=\frac{2\sqrt{5}-6}{\sqrt{\left(3-\sqrt{5}\right)^2}}-\frac{2\sqrt{5}-2\sqrt{7}}{\sqrt{\left(\sqrt{7}-\sqrt{5}\right)^2}}=\frac{2\sqrt{5}-6}{3-\sqrt{5}}-\frac{2\sqrt{5}-2\sqrt{7}}{\sqrt{7}-\sqrt{5}}\)

\(=-2+2=0\)

b. \(A=\sqrt{\frac{\left(9-4\sqrt{3}\right)\left(6-\sqrt{3}\right)}{36-3}}-\sqrt{\frac{\left(3+4\sqrt{3}\right)\left(5\sqrt{3}+6\right)}{25\times3-36}}\)

\(A=\sqrt{\frac{66-33\sqrt{3}}{33}}-\sqrt{\frac{78+39\sqrt{3}}{39}}=\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\)

ta có A<0 và \(A^2=2-\sqrt{3}-2\sqrt{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}+2+\sqrt{3}=2\)

Vậy \(A=-\sqrt{2}\)

Đọc tiếp...

mua vé báo cáo không?

Đọc tiếp...

ai không bị nghiện game thì đi chỗ khác chơi :)) 

Đọc tiếp...

ĐKXĐ : \(-2\le x\le1\)

Ta có : \(\sqrt{1-x}-\sqrt{2+x}=1\)

\(\Leftrightarrow\sqrt{1-x}=1+\sqrt{2+x}\)

\(\Leftrightarrow1-x=1+2+x+2\sqrt{2+x}\)

\(\Leftrightarrow2\sqrt{2+x}=-2x-2\)

\(\Leftrightarrow\sqrt{2+x}=-\left(x+1\right)\left(x\le-1\right)\)

\(\Leftrightarrow2+x=x+1\)

\(\Leftrightarrow0x=1\)(Vô lí)

Vậy PT vô nghiệm

Đọc tiếp...

a. ĐKXĐ: \(-2\le x\le1\)

ta có :\(\sqrt{1-x}=1+\sqrt{2+x}\Leftrightarrow1-x=1+2\sqrt{2+x}+2+x\)

\(\Leftrightarrow-2-2x=2\sqrt{2+x}\Leftrightarrow-1-x=\sqrt{2+x}\Leftrightarrow\hept{\begin{cases}x\le-1\\x^2+2x+1=x+2\end{cases}\Leftrightarrow x=\frac{-1-\sqrt{5}}{2}}\)

b.ĐKXĐ: \(-4\le x\le1\)ta có :

\(\sqrt{1-x}+\sqrt{4+x}=3\Leftrightarrow1-x+2\sqrt{1-x}\sqrt{4+x}+4+x=9\)

\(\Leftrightarrow\sqrt{1-x}.\sqrt{4+x}=2\Leftrightarrow4-3x-x^2=4\Leftrightarrow\orbr{\begin{cases}x=0\\x=-3\end{cases}}\)

Đọc tiếp...

Áp dụng bất đẳng thức Bunhia ta có :

\(\left(\sqrt{1+x^2}+\sqrt{2x}\right)^2\le2\left(1+x^2+2x\right)=2\left(x+1\right)^2\text{ nên }\sqrt{1+x^2}+\sqrt{2x}\le\sqrt{2}\left(x+1\right)\)

tương tự ta có : \(\hept{\begin{cases}\sqrt{1+y^2}+\sqrt{2y}\le\sqrt{2}\left(y+1\right)\\\sqrt{1+z^2}+\sqrt{2z}\le\sqrt{2}\left(z+1\right)\end{cases}}\)

Nên \(A\le\sqrt{2}\left(x+y+z+3\right)+\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\left(2-\sqrt{2}\right)\)

\(\le6\sqrt{2}+\left(2-\sqrt{2}\right)\sqrt{3\left(x+y+z\right)}\le6\sqrt{2}+\left(2-\sqrt{2}\right).3=6+3\sqrt{2}\)

dấu bằng xảy ra khi x=y=z=1

Đọc tiếp...

a. ta có

\(x^2+2x-1+4x+2=\left(2x+1\right)\sqrt{x^2+2x+3}\)

\(\Leftrightarrow x^2+2x-1=\left(2x+1\right)\left[\sqrt{x^2+2x+3}-2\right]\Leftrightarrow x^2+2x-1=\left(2x+1\right).\frac{x^2+2x-1}{\sqrt{x^2+2x+3}+2}\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x^2+2x+3}+2=2x+1\\x^2+2x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{x^2+2x+3}=2x-1\\x=-1\pm\sqrt{2}\end{cases}}}\)

với \(\sqrt{x^2+2x+3}=2x-1\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x^2+2x+3=4x^2-4x+1\end{cases}\Leftrightarrow x=\frac{3+\sqrt{15}}{3}}\)

b.\(3\sqrt{x-2}-\sqrt{x+6}=2x-6\Leftrightarrow\frac{8\left(x-3\right)}{3\sqrt{x-2}+\sqrt{x+6}}=2\left(x-3\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\3\sqrt{x-2}+\sqrt{x+6}=4\end{cases}}\)

với \(3\sqrt{x-2}+\sqrt{x+6}=4\Leftrightarrow10x-12+6\sqrt{\left(x-2\right)\left(x+6\right)}=16\)

\(\Leftrightarrow3\sqrt{x^2+4x-12}=14-5x\) xét điều kiện rồi bình phương thôi bạn nhé

Đọc tiếp...

tham khảo

Xét tứ giác MNEQ có

ˆM=900M^=900(gt)

ˆQ=900Q^=900(gt)

ˆNEQ=900NEQ^=900(NE⊥QP)

Do đó: MNEQ là hình chữ nhật(dấu hiệu nhận biết hình chữ nhật)

2) Ta có: QE=MN(hai cạnh đối của hình chữ nhật MNEQ)

mà MN=16cm(gt)

nên QE=16cm

Ta có: QE+EP=QP(E nằm giữa Q và P)

hay EP=QP-QE=24-16=8cm

Áp dụng định lí Pytago vào ΔNEP vuông tại E, ta được:

NP2=NE2+EP2NP2=NE2+EP2

⇔NE2=NP2−EP2=172−82=289−64=225⇔NE2=NP2−EP2=172−82=289−64=225

hay NE=√225=15cmNE=225=15cm

mà NE=MQ(hai cạnh đối của hình chữ nhật MNEQ)

nên MQ=15cm

Vậy: QE=16cm; EP=8cm; MQ=15cm

3) Ta có: MNEQ là hình chữ nhật(gt)

⇔SMNEQ=MN⋅EN=16⋅15=240cm2⇔SMNEQ=MN⋅EN=16⋅15=240cm2

Ta có: MNPQ là hình thang vuông có hai đáy là MN và QP(gt)

⇔SMNPQ=MN+PQ2⋅MQ=16+242⋅15=402⋅15=20⋅15=300cm2

Đọc tiếp...

...

Dưới đây là những câu có bài toán hay do Online Math lựa chọn.

....

Toán lớp 10Đố vuiToán có lời vănToán lớp 11Toán đố nhiều ràng buộcToán lớp 12Giải bằng tính ngượcLập luậnLô-gicToán chứng minhChứng minh phản chứngQui nạpNguyên lý DirechletGiả thiết tạmĐo lườngThời gianToán chuyển độngTính tuổiGiải bằng vẽ sơ đồTổng - hiệuTổng - tỉHiệu - tỉTỉ lệ thuậnTỉ lệ nghịchSố tự nhiênSố La MãPhân sốLiên phân sốSố phần trămSố thập phânSố nguyênSố hữu tỉSố vô tỉSố thựcCấu tạo sốTính chất phép tínhTính nhanhTrung bình cộngTỉ lệ thứcChia hết và chia có dưDấu hiệu chia hếtLũy thừaSố chính phươngSố nguyên tốPhân tích thành thừa số nguyên tốƯớc chungBội chungGiá trị tuyệt đốiTập hợpTổ hợpBiểu đồ VenDãy sốHằng đẳng thứcPhân tích thành nhân tửGiai thừaCăn thứcBiểu thức liên hợpRút gọn biểu thứcSố họcXác suấtTìm xPhương trìnhPhương trình nghiệm nguyênPhương trình vô tỉCông thức nghiệm Vi-etLập phương trìnhHệ phương trìnhBất đẳng thứcBất phương trìnhBất đẳng thức hình họcĐẳng thức hình họcHàm sốHệ trục tọa độĐồ thị hàm sốHàm bậc haiĐa thứcPhân thức đại sốĐạo hàm - vi phânLớn nhất - nhỏ nhấtHình họcĐường thẳngĐường thẳng song songĐường trung bìnhGócTia phân giácHình trònHình tam giácTam giác bằng nhauTam giác đồng dạngĐịnh lý Ta-letTứ giácTứ giác nội tiếpHình chữ nhậtHình thangHình bình hànhHình thoiHình hộp chữ nhậtHình ba chiềuChu viDiện tíchThể tíchQuĩ tíchLượng giácNgữ văn 10Hệ thức lượngViolympicNgữ văn 11Ngữ văn 12Giải toán bằng máy tính cầm tayToán tiếng AnhGiải tríTập đọcKể chuyệnTập làm vănChính tảLuyện từ và câuTiếng Anh lớp 10Tiếng Anh lớp 11Tiếng Anh lớp 12

Có thể bạn quan tâm


Tài trợ


sin cos tan cot sinh cosh tanh
Phép toán
+ - ÷ × = ∄ ± ⋮̸
α β γ η θ λ Δ δ ϵ ξ ϕ φ Φ μ Ω ω χ σ ρ π ( ) [ ] | /

Công thức: