Lỗi: Trang web OLM.VN không tải hết được tài nguyên, xem cách sửa tại đây.

Hỏi đáp Toán lớp 9


zZz Cool Kid_new zZz zZz Cool Kid_new zZz CTV 1 giờ trước (14:37)
Báo cáo sai phạm

Sử dụng bất đẳng thức AM - GM cho 2 số ta có được:

\(\sqrt{xy+2x+2y+4}=\sqrt{\left(x+2\right)\left(y+2\right)}\le\frac{x+2+y+2}{2}\)

\(\sqrt{\left(2x+2\right)y}=\sqrt{\left(x+1\right)\cdot2y}\le\frac{x+1+2y}{2}\)

Khi đó:

\(LHS\le\frac{x+2+y+2}{2}+\frac{x+1+2y}{2}=\frac{2x+3y+5}{2}=\frac{10}{2}=5\)

Đẳng thức xảy ra tại x=y=1

Đọc tiếp...
Lê Thị Ánh Dương Lê Thị Ánh Dương 17 phút trước
Báo cáo sai phạm

mình cx lớp 9 mà ngu lắm nè

đừng có ghi giống thế này nha, ko là bị vi phạm luật đó bn, pk hỏi câu hỏi có liên quan

Đọc tiếp...
ĐănG ĐănG 6 giờ trước (9:36)
Báo cáo sai phạm

Bài làm:

Ta có: \(\frac{a^2+b^2}{a+b}+\frac{b^2+c^2}{b+c}+\frac{c^2+a^2}{c+a}\)

\(=\frac{a^2}{a+b}+\frac{b^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{b+c}+\frac{c^2}{c+a}+\frac{a^2}{c+a}\)

\(=\left(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\right)+\left(\frac{a^2}{c+a}+\frac{b^2}{a+b}+\frac{c^2}{b+c}\right)\)

\(\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}+\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\)(Cauchy Schwars)

\(=\frac{\left(a+b+c\right)^2}{a+b+c}\ge\frac{3\left(ab+bc+ca\right)}{a+b+c}\)

Dấu "=" xảy ra khi: \(a=b=c\)

Đọc tiếp...
ミ★VĐ_TT^^★彡 ミ★VĐ_TT^^★彡 CTV 6 giờ trước (9:45)
Báo cáo sai phạm

làm nốt cách nx 

Áp dụng bất đẳng thức Bunhiacopxki ta được

\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\ge\frac{3\left(ab+bc+ca\right)}{2\left(a+b+c\right)}\)

\(\frac{b^2}{a+b}+\frac{c^2}{b+c}+\frac{a^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\ge\frac{3\left(ab+bc+ca\right)}{2\left(a+b+c\right)}\)

Cộng vế theo vế hai bất đẳng thức trên ta được 

\(\frac{a^2+b^2}{a+b}+\frac{b^2+c^2}{b+c}+\frac{c^2+a^2}{c+a}\ge\frac{3\left(ab+bc+ca\right)}{a+b+c}\left(đpcm\right)\)

Đẳng thức xảy ra khi và chỉ khi \(a=b=c\)

Đọc tiếp...
ミ★VĐ_TT^^★彡 ミ★VĐ_TT^^★彡 CTV 6 giờ trước (9:37)
Báo cáo sai phạm

Áp dụng bất đẳng thức Bunhiacopxki ta được 

\(\frac{a^2+b^2}{a+b}+\frac{b^2+c^2}{b+c}+\frac{c^2+a^2}{c+a}\ge\frac{\left(a+b\right)^2}{2\left(a+b\right)}+\frac{\left(b+c\right)^2}{2\left(b+c\right)}+\frac{\left(c+a\right)^2}{2\left(c+a\right)}\)

                                                        \(\ge\frac{\left(2a+2b+2c\right)^2}{4\left(a+b+c\right)}\ge\frac{12\left(ab+bc+ca\right)}{4\left(a+b+c\right)}=\frac{3\left(ab+bc+ca\right)}{a+b+c}\)( rút gọn 12/4)

   Bất đẳng thức được chứng minh 

Đẳng thức xảy ra khi và chỉ khi \(a=b=c\)

Đọc tiếp...
dcv_new dcv_new CTV 7 giờ trước (9:08)
Báo cáo sai phạm

bạn có thể dùng bđt phụ này :

\(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

và đây là cách chứng minh 

Bất đẳng thức tương đương :

\(a^2+b^2+a^2+b^2\ge a^2+b^2+2ab\)

\(< =>a^2+b^2\ge2ab\)

\(< =>\left(a-b\right)^2\ge0\)*đúng*

Đọc tiếp...
Lê Thị Khánh Huyền Lê Thị Khánh Huyền 8 giờ trước (7:39)
Báo cáo sai phạm

Tại sao lại phải sửa đề ạ?

Đọc tiếp...
ミ★VĐ_TT^^★彡 ミ★VĐ_TT^^★彡 CTV 18 giờ trước (21:44)
Báo cáo sai phạm

Sửa đề : 

\(P=\sqrt{x+5+2\sqrt{x+4}}-\sqrt{x+5-2\sqrt{x+4}}\)\(\left(x\ge-4\right)\)

\(=\sqrt{\left(x+4\right)+2\sqrt{x+4}+1}-\sqrt{\left(x+4\right)-2\sqrt{x+4}+1}\)

\(=\sqrt{\left(\sqrt{x+4}+1\right)^2}-\sqrt{\left(\sqrt{x+4}-1\right)^2}\)

\(=\left|\sqrt{x+4}+1\right|-\left|\sqrt{x+4}-1\right|\)

\(=\sqrt{x+4}+1-\sqrt{x+4}+1=2\)

Vậy \(P=2\)

Đọc tiếp...
ĐănG ĐănG 18 giờ trước (21:28)
Báo cáo sai phạm

Dạ là do bạn rút căn ra ấy ạ:

\(\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{5}-1\)

và \(\sqrt{\left(\sqrt{5}+1\right)^2}=\sqrt{5}+1\)

\(\Rightarrow\sqrt{\left(\sqrt{5}-1\right)^2}-\sqrt{\left(\sqrt{5}+1\right)^2}=\left(\sqrt{5}-1\right)-\left(\sqrt{5}+1\right)\)

\(=\sqrt{5}-1-\sqrt{5}-1=-2\)

Chúc bn hc tốt!!!

Đọc tiếp...
Lê Thị Khánh Huyền Lê Thị Khánh Huyền 18 giờ trước (21:23)
Báo cáo sai phạm

Bạn ơi cho tớ hỏi tại sao dòng cuối cùng lại là \(\sqrt{5}-1-\sqrt{5}-1\)

Đọc tiếp...
ĐănG ĐănG 18 giờ trước (21:13)
Báo cáo sai phạm

Bài làm:

a) \(A=\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}\)

\(A=\sqrt{5-2\sqrt{5}+1}-\sqrt{5+2\sqrt{5}+1}\)

\(A=\sqrt{\left(\sqrt{5}-1\right)^2}-\sqrt{\left(\sqrt{5}+1\right)^2}\)

\(A=\sqrt{5}-1-\sqrt{5}-1=-2\)

b) \(B=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)

\(B=\sqrt{4+4\sqrt{5}+5}-\sqrt{4-4\sqrt{5}+5}\)

\(B=\sqrt{\left(2+\sqrt{5}\right)^2}-\sqrt{\left(2-\sqrt{5}\right)^2}\)

\(B=2+\sqrt{5}-\sqrt{5}+2\)

\(B=4\)

Đọc tiếp...

...

Dưới đây là những câu có bài toán hay do Online Math lựa chọn.

....

Toán lớp 10Đố vuiToán có lời vănToán lớp 11Toán đố nhiều ràng buộcToán lớp 12Giải bằng tính ngượcLập luậnLô-gicToán chứng minhChứng minh phản chứngQui nạpNguyên lý DirechletGiả thiết tạmĐo lườngThời gianToán chuyển độngTính tuổiGiải bằng vẽ sơ đồTổng - hiệuTổng - tỉHiệu - tỉTỉ lệ thuậnTỉ lệ nghịchSố tự nhiênSố La MãPhân sốLiên phân sốSố phần trămSố thập phânSố nguyênSố hữu tỉSố vô tỉSố thựcCấu tạo sốTính chất phép tínhTính nhanhTrung bình cộngTỉ lệ thứcChia hết và chia có dưDấu hiệu chia hếtLũy thừaSố chính phươngSố nguyên tốPhân tích thành thừa số nguyên tốƯớc chungBội chungGiá trị tuyệt đốiTập hợpTổ hợpBiểu đồ VenDãy sốHằng đẳng thứcPhân tích thành nhân tửGiai thừaCăn thứcBiểu thức liên hợpRút gọn biểu thứcSố họcXác suấtTìm xPhương trìnhPhương trình nghiệm nguyênPhương trình vô tỉCông thức nghiệm Vi-etLập phương trìnhHệ phương trìnhBất đẳng thứcBất phương trìnhBất đẳng thức hình họcĐẳng thức hình họcHàm sốHệ trục tọa độĐồ thị hàm sốHàm bậc haiĐa thứcPhân thức đại sốĐạo hàm - vi phânLớn nhất - nhỏ nhấtHình họcĐường thẳngĐường thẳng song songĐường trung bìnhGócTia phân giácHình trònHình tam giácTam giác bằng nhauTam giác đồng dạngĐịnh lý Ta-letTứ giácTứ giác nội tiếpHình chữ nhậtHình thangHình bình hànhHình thoiHình hộp chữ nhậtHình ba chiềuChu viDiện tíchThể tíchQuĩ tíchLượng giácNgữ văn 10Hệ thức lượngViolympicNgữ văn 11Ngữ văn 12Giải toán bằng máy tính cầm tayToán tiếng AnhGiải tríTập đọcKể chuyệnTập làm vănChính tảLuyện từ và câuTiếng Anh lớp 10Tiếng Anh lớp 11Tiếng Anh lớp 12

Có thể bạn quan tâm


Tài trợ


sin cos tan cot sinh cosh tanh
Phép toán
+ - ÷ × = ∄ ± ⋮̸
α β γ η θ λ Δ δ ϵ ξ ϕ φ Φ μ Ω ω χ σ ρ π ( ) [ ] | /

Công thức: