Lỗi: Trang web OLM.VN không tải hết được tài nguyên, xem cách sửa tại đây.

Hỏi đáp Phân thức đại số


1^2+2^2+3^2

= 1 + 4 + 9 = 14

Đọc tiếp...

1^2 + 2^2 + 3^2 = 1 + 6 + 27 =34

Đọc tiếp...
Xyz CTV

Ta có : 16 \(\le\)4n < 64

=> 42 \(\le\)4n < 43

=> 4n = 42 (Vì n \(\inℕ\))

=> n = 2

Vậy n = 2

Đọc tiếp...

\(=>4^2\le4^n< 4^3\)

\(=>2\le n< 3\)

\(=>n=2\)

\(\text{Vậy n=2}\)

Đọc tiếp...

\(16\le4^n< 64\)

\(\Leftrightarrow4^2\le4^n< 4^3\)

\(\Leftrightarrow2\le n< 3\)

\(\Leftrightarrow n=2\)

Vậy \(n=2\)

Đọc tiếp...

\(\frac{27^2.8^5}{6^6.32^3}=\frac{\left(3^3\right)^2.\left(2^3\right)^5}{2^3.3^3.\left(2^5\right)^3}=\frac{3^6.2^{15}}{2^3.3^3.2^{15}}=\frac{27}{8}\)

học tốt

Đọc tiếp...

đề có sai ko bạn

Đọc tiếp...

\(\frac{27^2.8^5}{6^6.32^3}\)=\(\frac{3^6.32^3}{6^6.32^3}\)=\(\frac{3^6}{6^6}\)=\(\frac{729}{46656}\)=\(\frac{1}{64}\)

Đọc tiếp...

Bài làm:

Ta có: \(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=\frac{y}{x}+\frac{x}{z}+\frac{z}{y}\)

\(\Leftrightarrow\frac{zx^2+xy^2+yz^2}{xyz}=\frac{y^2z+x^2y+z^2x}{xyz}\)

\(\Rightarrow zx^2+xy^2+yz^2=y^2z+x^2y+z^2x\)

\(\Leftrightarrow zx^2+xy^2+yz^2-y^2z-x^2y-z^2x=0\)

\(\Leftrightarrow\left(zx^2-z^2x\right)+\left(xy^2-y^2z\right)-\left(x^2y-yz^2\right)=0\)

\(\Leftrightarrow zx\left(x-z\right)+y^2\left(x-z\right)-y\left(x-z\right)\left(x+z\right)=0\)

\(\Leftrightarrow\left(x-z\right)\left(zx+y^2-xy-yz\right)=0\)

\(\Leftrightarrow\left(x-z\right)\left[z\left(x-y\right)-y\left(x-y\right)\right]=0\)

\(\Leftrightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)=0\)

=> x - y = 0 hoặc y - z = 0 hoặc z - x = 0

=> x = y hoặc y = z hoặc z = x

Vậy luôn tồn tại 2 số trong 3 số x,y,z bằng nhau

=> đpcm 

Đọc tiếp...
Xyz CTV

a) Ta có : \(A=\frac{3x+5}{x+4}=\frac{3x+12-7}{x+4}=\frac{3\left(x+4\right)-7}{x+4}=3-\frac{7}{x+4}\)

Vì \(3\inℤ\Rightarrow\frac{-7}{x+4}\inℤ\Rightarrow-7⋮x+4\Rightarrow x+4\inƯ\left(-7\right)\)

=> \(x+4\in\left\{1;-1;-7;7\right\}\Rightarrow x\in\left\{-3;-5;-11;7\right\}\)

b) Ta có B = \(\frac{10x^2-7x-5}{2x-3}=\frac{10x^2-15x+8x-12+7}{2x-3}=\frac{5x\left(2x-3\right)+4\left(2x-3\right)+7}{2x-3}\)

\(=\frac{\left(5x+4\right)\left(2x-3\right)+7}{2x-3}=5x+4+\frac{7}{2x-3}\)

Vì \(\hept{\begin{cases}5x\inℤ\\4\inℤ\end{cases}\Rightarrow\frac{7}{2x-3}\inℤ\Rightarrow7⋮2x-3\Rightarrow2x-3\inƯ\left(7\right)\Rightarrow2x-3\in\left\{1;7;-1;-7\right\}}\)

=> \(x\in\left\{2;5;1;-2\right\}\)

Đọc tiếp...

Đặt \(\hept{\begin{cases}a=4k\\b=7k\end{cases}}\)

Ta có : \(ab=112\)

\(\Leftrightarrow4k.7k=112\Leftrightarrow28k^2=112\Leftrightarrow k^2=4\Leftrightarrow k=2\)

\(\hept{\begin{cases}a=8\\b=14\end{cases}}\)

Đọc tiếp...

Đặt \(\hept{\begin{cases}a=4k\\b=7k\end{cases}}\)=> ab=4k.7k=28k2=112

=> k2=4 => \(\orbr{\begin{cases}k=2\\k=-2\end{cases}}\)

+Với k=2 => \(\hept{\begin{cases}a=4.2=8\\b=7.2=14\end{cases}}\)

+Với k=-2 => \(\hept{\begin{cases}a=4.-2=-8\\b=7.-2=-14\end{cases}}\)

Vậy....

Đọc tiếp...
Xyz CTV

Đặt \(\frac{a}{4}=\frac{b}{7}=k\Rightarrow\hept{\begin{cases}a=4k\\b=7k\end{cases}}\)

Khi đó ab = 112

<=> 4k.7k = 112

=> 28k2 = 112

=> k2 = 4

=> k = \(\pm\)2

Nếu k = 2 => a = 8 ; b = 14

Nếu k =- 2 => a = -8 ; b = - 14

Vậy các cặp (a;b) thỏa mãn là (8;14) ; (-8 ; - 14)

Đọc tiếp...

Với hai phân thức \(\frac{A}{B}\)và  \(\frac{C}{D}\), ta tìm được hai phân thức cùng mẫu \(\frac{AD}{BD},\frac{CB}{BD}\)và thỏa mãn điều kiện :

\(\frac{AD}{BD}=\frac{A}{B},\frac{CB}{BD}=\frac{C}{D}\)

Ta nhân tử và mẫu của hai phân thức đó cùng với một đa thức \(M\ne0\), ta có hai phân thức mới cùng mẫu \(\frac{A.D.M}{B.D.M}\)và \(\frac{C.B.M}{B.D.M}\), lần lượt hai phân thức \(\frac{A}{B},\frac{C}{D}\)

Đặt \(B.D.M=E,A.D.M=A',C.B.M=C'\) ta có :

\(\frac{A'}{E}=\frac{A}{B};\frac{C'}{E}=\frac{C}{D}\)

Vì có vô số đa thức \(M\ne0\)nên ta có vô số phân thức cùng mẫu bằng phân số bài cho .

Học tốt !

Đọc tiếp...

lần sau mình nghĩ bạn nên tự vt đề rồi đăng lên chứ vt như bạn thì một số người lớp khác có thể bt làm nhưng lại ko bt đề để giúp bạn :))

Đọc tiếp...

Với mọi số tự nhiên n ta có: 

\(3^{n+1}+3^{n+2}+3^{n+3}=3^{n+1}\left(1+3+3^2\right)=3^{n+1}.13⋮13\)

Vậy \(3^{n+1}+3^{n+2}+3^{n+3}⋮13\)

Đọc tiếp...

Ta có:

\(\frac{2.\left(x^2+x+1\right)}{x^2+1}=\frac{2.\left(x^2+1\right)+2x}{x^2+1}=2+\frac{2x}{x^2+1}\)

Ta có:\(2+\frac{2x}{x^2+1}-1=1+\frac{2x}{x^2+1}\)

\(=\frac{x^2+2x+1}{x^2+1}=\frac{\left(x+1\right)^2}{x^2+1}\ge0\)  \(\Rightarrow\frac{2.\left(x^2+x+1\right)}{x^2+1}\ge1\)

\(2+\frac{2x}{x^2+1}-3=\frac{2x}{x^2+1}-1=\frac{-x^2+2x-1}{x^2+1}\)

\(=\frac{-\left(x-1\right)^2}{x^2+1}\le0\) \(\Rightarrow\frac{2.\left(x^2+x+1\right)}{x^2+1}\le3\)

Vậy \(1\le\frac{2.\left(x^2+x+1\right)}{x^2+1}\le3\)

Đọc tiếp...

1, Các bước giải phương trình chứa ẩn ở mẫu:

Bước 1: Tìm ĐKXĐ của phương trình

Bước 2: Quy đồng và khử mẫu phương trình

Bước 3: Giải phương trình đã khử mẫu

Bước 4: Đối chiếu nghiệm với ĐKXĐ

2, Bạn kiểm tra lại đề

Đọc tiếp...

\(\frac{x+2}{x}=\frac{2x+3}{2\left(x-2\right)}\left(1\right)\)

\(ĐKXĐ:x\ne0;2\)

\(\left(1\right)\Leftrightarrow\frac{2\left(x+2\right)\left(x-2\right)}{2x\left(x-2\right)}=\frac{x\left(2x+3\right)}{2x\left(x-2\right)}\)

\(\Rightarrow2\left(x+2\right)\left(x-2\right)=x\left(2x+3\right)\)

\(\Leftrightarrow2\left(x^2-4\right)=x\left(2x+3\right)\)

\(\Leftrightarrow2x^2-8=2x^2+3x\)

\(\Leftrightarrow3x=-8\)

\(\Leftrightarrow x=-\frac{8}{3}\)

Vậy : Ta có tập nghiệm phương trình \(S=\left\{-\frac{8}{3}\right\}\)

Đọc tiếp...

Câu 2 đề đúng mà? Giải PT chứa ẩn ở mẫu đó.

Đọc tiếp...

Các bạn giúp mk nha!

Đọc tiếp...

2x+1x22x+1 2x+3x1 =0

\(\frac{\left(2x+1\right)\left(x+1\right)}{\left(x-1\right)^2\left(x+1\right)}-\frac{\left(2x+3\right)\left(x-1\right)}{\left(x-1\right)^2\left(x+1\right)}=0.\)

\(\frac{2x^2+3x+1}{\left(x-1\right)^2\left(x+1\right)}-\frac{2x^2-x+3}{\left(x-1\right)^2\left(x+1\right)}=0\)

\(\frac{2x+4}{\left(x-1\right)^2\left(x+1\right)}=0\)

=> 2x+4=0

         2x=-4

           x=-2

Học tốt nhé!

Đọc tiếp...

Dòng đầu mk cóp lại cái đầu bài nhưng nó bị lỗi đấy 

Đọc tiếp...

\(\text{GIẢI :}\)

\(A=\left(\frac{x-2}{x}-\frac{x}{x-3}+\frac{9}{x^2-3x}\right):\frac{2x-2}{x}\)

\(=\left(\frac{\left(x-2\right)\left(x-3\right)}{x\left(x-3\right)}-\frac{x^2}{x\left(x-3\right)}+\frac{9}{x\left(x-3\right)}\right):\frac{2x-2}{x}\)

\(=\frac{x^2-3x-2x+6-x^2+9}{x\left(x-3\right)}:\frac{2x-2}{x}\)

\(=\frac{-5x+15}{x\left(x-3\right)}\cdot\frac{x}{2x-2}\)

\(=\frac{-5\left(x-3\right)}{x\left(x-3\right)}\cdot\frac{x}{2x-2}=\frac{-5}{2x-2}\).

Đọc tiếp...

\(\text{GIẢI :}\)

ĐKXĐ : \(a\ne\pm1\).

\(M=\frac{1}{a^2-2a+1}-\left(\frac{a}{a^2-1}-\frac{1}{a^3-a}\right):\frac{a^2-2a+1}{a+a^3}\)

\(=\frac{1}{a^2-2a+1}-\left(\frac{a}{a^2-1}-\frac{1}{a\left(a^2-1\right)}\right):\frac{a^2-2a+1}{a+a^3}\)

\(=\frac{1}{a^2-2a+1}-\left(\frac{a^2}{a\left(a^2-1\right)}-\frac{1}{a\left(a^2-1\right)}\right):\frac{a^2-2a+1}{a+a^3}\)

\(=\frac{1}{a^2-2a+1}-\frac{a^2-1}{a\left(a^2-1\right)}:\frac{\left(a-1\right)^2}{a\left(1+a^2\right)}\)

\(=\frac{1}{a^2-2a+1}-\frac{\left(a-1\right)^2}{a\left(a^2-1\right)}\cdot\frac{a\left(a^2+1\right)}{1+a^2}\)

\(=\frac{1}{a^2-2a+1}-\frac{\left(a-1\right)^2}{1+a^2}=\frac{-a^2}{\left(a-1\right)^2}\).

Đọc tiếp...

a) \(\frac{3}{2x^2+2x}+\frac{2x-1}{x^2-1}-\frac{2}{x}=\frac{3}{2x\left(x+1\right)}+\frac{2x-1}{\left(x-1\right)\left(x+1\right)}-\frac{2}{x}\)

                                                          \(=\frac{3\left(x-1\right)+\left(2x-1\right)-2.2\left(x-1\right)\left(x+1\right)}{2x\left(x-1\right)\left(x+1\right)}\)

                                                          \(=\frac{3x-2x+4x^2-2x-4x^2+4x-4x+4}{2x\left(x-1\right)\left(x+1\right)}\)

                                                          \(=\frac{x+1}{2x\left(x-1\right)\left(x+1\right)}\)

                                                          \(=\frac{1}{2x\left(x-1\right)}\)

b) \(\frac{3x}{5x+5y}-\frac{x}{10x-10y}=\frac{3x}{5\left(x+y\right)}-\frac{x}{10\left(x-y\right)}\)

                                                   \(=\frac{3x.10\left(x-y\right)-x.5\left(x+y\right)}{50\left(x-y\right)\left(x+y\right)}\)

                                                   \(=\frac{30x\left(x-y\right)+5x\left(x+y\right)}{50\left(x-y\right)\left(x+y\right)}\)

                                                   \(=\frac{5x\left[6\left(x-y\right)-\left(x+y\right)\right]}{50\left(x-y\right)\left(x+y\right)}\)

                                                   \(=\frac{5x\left(5x-7y\right)}{50\left(x-y\right)\left(x+y\right)}\)

                                                   \(=\frac{x\left(5x-7y\right)}{10\left(x-y\right)\left(x+y\right)}\)

c) \(\frac{5x^2-y^2}{xy}-\frac{3x-2y}{y}=\frac{5x^2-y-x\left(3x-2y\right)}{xy}\)

                                                \(=\frac{5x^2-y-3x^2+2xy}{xy}\)

                                               \(=\frac{2x^2-y+2xy}{xy}\)

d) \(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}=\frac{3}{2\left(x+3\right)}-\frac{x-6}{2x\left(x+3\right)}\)

                                            \(=\frac{3x-x+6}{2x\left(x+3\right)}\)

                                            \(=\frac{2x+6}{2x\left(x+3\right)}\)

                                            \(=\frac{2\left(x+3\right)}{2x\left(x+3\right)}\)

                                            \(=\frac{2}{2x}=\frac{1}{x}\) 

Đọc tiếp...

\(\frac{3x}{5x+5y}-\frac{x}{10x-10y}\)

\(=\frac{3x}{5\left(x+y\right)}-\frac{x}{10\left(x+y\right)}\)

\(=\frac{30x\left(x-y\right)-5x\left(x+y\right)}{5\left(x+y\right).10\left(x+y\right)}\)

\(=\frac{5x\left(5x-7y\right)}{50\left(x+y\right)\left(x-y\right)}\)

\(=\frac{x\left(5x-7y\right)}{\left(x+y\right)\left(x-y\right)}\)

Đọc tiếp...

chỗ cuối tớ sai 

\(=\frac{x\left(5x-7y\right)}{10\left(x+y\right)\left(x-y\right)}\)

đây nha , e xin lỗi

Đọc tiếp...

\(\frac{4x+1}{2}-\frac{3x+2}{3}\)

\(=\frac{12x+3}{6}-\frac{6x+4}{6}=\frac{6x-1}{6}\)

tương tự đến hết nha a hay cj gì đps ! 

Đọc tiếp...

a, \(\frac{4x+1}{2}-\frac{3x+2}{3}=\frac{12x+3}{6}-\frac{6x+4}{6}=\frac{12x+3-6x-4}{6}=\frac{6x-1}{6}\)

b, \(\frac{x+3}{x^2-1}-\frac{1}{x^2+x}=\frac{x+3}{\left(x-1\right)\left(x+2\right)}-\frac{1}{x\left(x+1\right)}\)

\(=\frac{x\left(x+3\right)}{x\left(x-1\right)\left(x+1\right)}-\frac{x-1}{x\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x^2+3x-x+1}{x\left(x-1\right)\left(x+1\right)}=\frac{x^2+2x+1}{x\left(x-1\right)\left(x+1\right)}=\frac{\left(x+1\right)^2}{x\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x+1}{x\left(x-1\right)}\)

Đọc tiếp...

a) \(\frac{4.x+1}{2}-\frac{3.x+2}{3}=\frac{3.\left(4.x+1\right)-2.\left(3.x+2\right)}{6}\)

                                                \(=\frac{12.x+3-6.x-4}{6}\)

                                                   \(=\frac{6.x-1}{6}\)

b)\(\frac{x+3}{x^2-1}-\frac{1}{x^2+x}\)

\(=\frac{x+3}{\left(x-1\right).\left(x+1\right)}-\frac{1}{x.\left(x+1\right)}\)

\(=\frac{x.\left(x+3\right)-\left(x-1\right)}{x.\left(x-1\right).\left(x+1\right)}\)

\(=\frac{x^2+3.x-x+1}{x.\left(x-1\right).\left(x+1\right)}\)

\(=\frac{x^2+2.x+1}{x.\left(x-1\right).\left(x+1\right)}\)

\(=\frac{\left(x+1\right)^2}{x.\left(x-1\right).\left(x+1\right)}\)

\(=\frac{x+1}{x.\left(x-1\right)}\)

\(=\frac{x+1}{x^2-x}\)

c)\(\frac{3}{2.x^2+2.x}+\frac{2.x-1}{x^2-1}-\frac{1}{2}\)

\(=\frac{3}{2.x.\left(x+1\right)}+\frac{2.x-1}{\left(x-1\right).\left(x+1\right)}-\frac{1}{2}\)

\(=\frac{3.\left(x-1\right)+2.x.\left(2.x-1\right)-x.\left(x-1\right).\left(x+1\right)}{2.x.\left(x-1\right).\left(x+1\right)}\)

\(=\frac{3.x-3+4.x^2-2.x-x.\left(x^2-1\right)}{2.x.\left(x-1\right).\left(x+1\right)}\)

\(=\frac{3.x-3+4.x^2-2.x-x^3+x}{2.x.\left(x-1\right).\left(x+1\right)}\)

\(=\frac{2.x-3+4.x^2-x^3}{2.x.\left(x-1\right).\left(x+1\right)}\)

\(=\frac{-x^3+4.x^2+2.x-3}{2.x.\left(x-1\right).\left(x+1\right)}\)

\(=\frac{-x^3-x^2+5.x^2+5.x-3.x-3}{2.x.\left(x-1\right).\left(x+1\right)}\)

\(=\frac{-x^2.\left(x+1\right)+5.x.\left(x+1\right)-3.\left(x+1\right)}{2.x.\left(x-1\right).\left(x+1\right)}\)

\(=\frac{-\left(x+1\right).\left(x^2-5.x+3\right)}{2.x.\left(x-1\right).\left(x+1\right)}\)

\(=\frac{-\left(x^2-5.x+3\right)}{2.x.\left(x-1\right)}\)

\(=-\frac{x^2-5.x+3}{2.x^2-2.x}\)

Đọc tiếp...

1,\(\frac{3}{2x+6}-\frac{x-6}{x\left(2x+6\right)}\)

=\(\frac{3x}{x\left(2x+6\right)}+\frac{x-6}{x\left(2x+6\right)}\)

=\(\frac{3x+x-6}{x\left(2x+6\right)}\)=\(\frac{4x-6}{x\left(2x+6\right)}=\frac{2\left(2x-3\right)}{x\left(2x+6\right)}\)

Đọc tiếp...

2, \(\frac{1}{1-x}-\frac{2x}{1-x^2}\)=\(\frac{1+x}{\left(1-x\right)\left(1+x\right)}+\frac{2x}{\left(1-x\right)\left(1+x\right)}\)=\(\frac{1+x+2x}{\left(1-x\right)\left(1+x\right)}=\frac{3x+1}{\left(1-x\right)\left(1+x\right)}\)

Đọc tiếp...

3,1/x(y-x)-1/y(y-x)=y/xy(y-x)-x/xy(y-x)=(y-x)/xy(x-y)=1/xy

Đọc tiếp...

...

Dưới đây là những câu có bài toán hay do Online Math lựa chọn.

....

Toán lớp 10Đố vuiToán có lời vănToán lớp 11Toán đố nhiều ràng buộcToán lớp 12Giải bằng tính ngượcLập luậnLô-gicToán chứng minhChứng minh phản chứngQui nạpNguyên lý DirechletGiả thiết tạmĐo lườngThời gianToán chuyển độngTính tuổiGiải bằng vẽ sơ đồTổng - hiệuTổng - tỉHiệu - tỉTỉ lệ thuậnTỉ lệ nghịchSố tự nhiênSố La MãPhân sốLiên phân sốSố phần trămSố thập phânSố nguyênSố hữu tỉSố vô tỉSố thựcCấu tạo sốTính chất phép tínhTính nhanhTrung bình cộngTỉ lệ thứcChia hết và chia có dưDấu hiệu chia hếtLũy thừaSố chính phươngSố nguyên tốPhân tích thành thừa số nguyên tốƯớc chungBội chungGiá trị tuyệt đốiTập hợpTổ hợpBiểu đồ VenDãy sốHằng đẳng thứcPhân tích thành nhân tửGiai thừaCăn thứcBiểu thức liên hợpRút gọn biểu thứcSố họcXác suấtTìm xPhương trìnhPhương trình nghiệm nguyênPhương trình vô tỉCông thức nghiệm Vi-etLập phương trìnhHệ phương trìnhBất đẳng thứcBất phương trìnhBất đẳng thức hình họcĐẳng thức hình họcHàm sốHệ trục tọa độĐồ thị hàm sốHàm bậc haiĐa thứcPhân thức đại sốĐạo hàm - vi phânLớn nhất - nhỏ nhấtHình họcĐường thẳngĐường thẳng song songĐường trung bìnhGócTia phân giácHình trònHình tam giácTam giác bằng nhauTam giác đồng dạngĐịnh lý Ta-letTứ giácTứ giác nội tiếpHình chữ nhậtHình thangHình bình hànhHình thoiHình hộp chữ nhậtHình ba chiềuChu viDiện tíchThể tíchQuĩ tíchLượng giácNgữ văn 10Hệ thức lượngViolympicNgữ văn 11Ngữ văn 12Giải toán bằng máy tính cầm tayToán tiếng AnhGiải tríTập đọcKể chuyệnTập làm vănChính tảLuyện từ và câuTiếng Anh lớp 10Tiếng Anh lớp 11Tiếng Anh lớp 12

Có thể bạn quan tâm


Tài trợ


sin cos tan cot sinh cosh tanh
Phép toán
+ - ÷ × = ∄ ± ⋮̸
α β γ η θ λ Δ δ ϵ ξ ϕ φ Φ μ Ω ω χ σ ρ π ( ) [ ] | /

Công thức: