Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cái tên.. àk mà thôi -_-
\(a)\) \(1+2+3+4+...+n=\frac{n\left(n+1\right)}{2}\)
\(b)\) \(2+4+6+8+...+2n=\left(\frac{2n-2}{2}+1\right)\left(2n+2\right)=\frac{2n\left(2n+2\right)}{2}=2n\left(n+1\right)\)
\(c)\) \(1+3+5+...+\left(2n+1\right)=\left(\frac{2n+1-1}{2}+1\right)\left(2n+1+1\right)=\frac{\left(2n+2\right)\left(2n+2\right)}{2}=\frac{\left(2n+2\right)^2}{2}\)
\(d)\) \(1+4+7+10+...+2005=\left(\frac{2005-1}{3}+1\right)\left(2005+1\right)=1342014\)
\(e)\) \(2+5+...+2006=\left(\frac{2006-2}{3}+1\right)\left(2006+2\right)=1343352\)
\(g)\) \(1+5+9+...+2001=\left(\frac{2001-1}{4}+1\right)\left(2001+1\right)=1003002\)
Chúc bạn học tốt ~

Xin lỗi: Câu 2 phần b thiếu trường hợp n+1=-1 hoặc n+1=-3 nên n=-2 hoặc n=-4

a) 5+52+53+54+...+5100
= (5+52)+(53+54)+...+(599+5100)
= 30+52.(5+52)+...+598.(5+52)
= 30+52.30+...+598.30
= 30.(1+52+...+598)
Vì 30 chia hết cho 10
=> 30.(1+52+...+598) chia hết cho 10
=> 5+52+53+...+5100 chia hết cho 10

a chia cho 153 dư 110 => a - 110 chia hết cho 153
a chia cho 117 dư 110 => a - 110 chia hết cho 117
=> a - 110 \(∈\) BC(153; 117)
153 = 32.17 ; 117 = 32.13 => BCNN (153;117) = 32.13.17 = 1989
=> a -110 \(∈\) B(1989) = {0;1989; 3978;5967;...} => a \(∈\) {110;2099;4088; ...}
Mà 2000 < a < 5000 nên a = 2099 hoặc a = 4088
Vậy...
Chúc bạn học tốt

Với n = 0 thì n2005 + 2005n + 2005n = 02005 + 20050 + 2005.0 = 1 + 1 + 0 = 2 không chia hết cho 3, loại.
Với n = 1 thì n2005 + 2005n + 2005n = 12005 + 20051 + 2005.1 = 1 + 2005 + 2005 = 4011 chia hết cho 3.
Với n > 1 thì đều ra trường hợp không chia hết cho 3.
Vậy n = 1
vi 2005 chia cho 3 du 1 nen 2005n=3k+1
ta chia 3TH:
TH1:n=3k
=>2005n+n2005+2005n=(3k+1+3k+3k) chia cho 3 du 1(loại)
TH2:n=3k+1
=>2005n+n2005+2005n=3k+1+3k+1+3k+1=3(3k+1)chia het cho 3
TH3:n=3k+2
=>2005n+n2005+2005n=3k+1+3k+2+3k+2=3.3k+5chia cho 3 du 1(loai)
vậy n có dang 3k+1 thi 2005n+n2005+2005n chia het cho 3