K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2016

Sử dụng bđt Côsi:

\(\frac{a^3}{b}+ab\ge2\sqrt{\frac{a^3}{b}.ab}=2a^2\)

Tương tự và suy ra:

\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}+ab+bc+ca\ge2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

Thu gọn lại, ta có đpcm.

7 tháng 8 2016

a^3/b +a^3/b +b^2 >=3.a^2 
=>2a^3/b +b^2>=3a^2 
Cm tương tự : 
2b^3/c +c^2 >=3.b^2 
2c^3/a +a^2 >=3.c^2 
Cộng vế ta đc  : 
2(a^3/b+b^3/c+c^3/a) +(a^2+b^2+c^2) >=3.(a^2+b^2+c^2) 
=>a^3/b+b^3/c+c^3/a >=a^2+b^2+c^2 
Mặt khác : 
a^2+b^2+c^2>=ab+bc+ca 
nên
a^3/b+b^3/c+c^3/a >=ab+bc+ca Dấu
 = xảy ra khi a=b=c

28 tháng 7 2019

Đề chơi căng nhỉ?

a) Dễ chứng minh VP =< 3

BĐT \(\Leftrightarrow\left(\frac{a+b}{1+a}-1\right)+\left(\frac{b+c}{1+b}-1\right)+\left(\frac{c+a}{1+c}-1\right)\ge0\)

\(\Leftrightarrow\frac{b-1}{1+a}+\frac{c-1}{1+b}+\frac{a-1}{1+c}\ge0\)

\(\Leftrightarrow\frac{\left(b-1\right)^2}{\left(1+a\right)\left(b-1\right)}+\frac{\left(c-1\right)^2}{\left(1+b\right)\left(c-1\right)}+\frac{\left(a-1\right)^2}{\left(1+c\right)\left(a-1\right)}\) >=0

Áp dụng BĐT Cauchy-Schwarz dạng Engel vào VT ta có đpcm.

P/s: Èo, sao đơn giản thế nhỉ? Em có làm sai chỗ nào chăng?

28 tháng 7 2019

èo, sai rồi:( đẳng thức xảy ra khi a = b = c = 1 nên cái mẫu = 0 do đó vô lí => bài em sai mất rồi:(( hicc

19 tháng 3 2019

\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ac}=\frac{\left(ab+bc+ac\right)^2}{ab+bc+ca}=ab+bc+ac\)

\("="\Leftrightarrow a=b=c\)

NV
19 tháng 3 2019

\(\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+ac+bc}\ge\frac{\left(ab+ac+bc\right)^2}{ab+ac+bc}=ab+ac+bc\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

18 tháng 8 2019

By Cauchy-Schwarz, we have:

\(VT\ge\frac{\left(a^3+b^3+c^3\right)^2}{2\left(a^3+b^3+c^3\right)+a^2b+b^2c+c^2a}\)

We will prove: \(a^2b+b^2c+c^2a\le a^3+b^3+c^3\)

\(\Leftrightarrow a^2b+b^2c+c^2a+3abc\le a^3+b^3+c^3+3abc\)

By Schur, we have: \(RHS\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(a\right)\)

So we're only need to prove: \(ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\ge a^2b+b^2c+c^2a+3abc\)

\(\Leftrightarrow ab^2+bc^2+ca^2\ge3abc\)

It is true by AM-GM ineq', so we have Q.E.D.

P/s: Em thử giải bài này bằng tiếng Anh (để tự luyện kĩ năng tiếng anh, tí em giải lại theo tiếng việt)

18 tháng 8 2019

Ấy nhầm:V

By Schur, we have \(RHS\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)

So we're only need to prove \(ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\ge a^2b+b^2c+c^2a\)

Còn lại y chang:v

6 tháng 3 2018

Ta có:
\(\frac{a^3b}{a^3+b^3}-\frac{ab^3}{a^3+b^3}=\frac{ab\left(a^2-b^2\right)}{a^3+b^3}=\frac{ab\left(a-b\right)}{a^2-ab+b^2}=\frac{a-b}{\frac{a}{b}+\frac{b}{a}-1}\ge\frac{a-b}{\frac{a}{b}+\frac{a}{a}-1}=\frac{b\left(a-b\right)}{a}\)
\(\frac{b^3c}{b^3+c^3}-\frac{bc^3}{b^3+c^3}=\frac{bc\left(b^2-c^2\right)}{b^3+c^3}=\frac{bc\left(b-c\right)}{b^2-bc+c^2}=\frac{b-c}{\frac{b}{c}+\frac{c}{b}-1}\ge\frac{b-c}{\frac{a}{c}+\frac{b}{b}-1}=\frac{c\left(b-c\right)}{a}\)
\(\frac{c^3a}{c^3+a^3}-\frac{ca^3}{c^3+a^3}=\frac{ca\left(c^2-a^2\right)}{c^3+a^3}=\frac{ca\left(c-a\right)}{c^2-ca+a^2}=\frac{c-a}{\frac{c}{a}+\frac{a}{c}-1}\ge\frac{c-a}{\frac{a}{c}+\frac{a}{a}-1}=\frac{c\left(c-a\right)}{a}\)
\(\Rightarrow\frac{a^3b}{a^3+b^3}-\frac{ab^3}{a^3+b^3}+\frac{b^3c}{b^3+c^3}-\frac{bc^3}{b^3+c^3}+\frac{c^3a}{c^3+a^3}-\frac{ca^3}{c^3+a^3}\ge\frac{b\left(a-b\right)+c\left(c-a\right)+c\left(b-c\right)}{a}=\frac{ab-b^2-ac+bc}{a}=\frac{\left(a-b\right)\left(b-c\right)}{a}\ge0\)
\(\Leftrightarrow\frac{a^3b}{a^3+b^3}+\frac{b^3c}{b^3+c^3}+\frac{c^3a}{c^3+a^3}\ge\frac{ab^3}{a^3+b^3}+\frac{bc^3}{b^3+c^3}+\frac{ca^3}{c^3+a^3}\left(đpcm\right)\)

25 tháng 1 2020

1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)

\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)

25 tháng 1 2020

2.

Vỉ \(ab+bc+ca+abc=4\)thi luon ton tai \(a=\frac{2x}{y+z};b=\frac{2y}{z+x};c=\frac{2z}{x+y}\)

\(\Rightarrow VT=2\Sigma_{cyc}\sqrt{\frac{ab}{\left(b+c\right)\left(c+a\right)}}\le2\Sigma_{cyc}\frac{\frac{b}{b+c}+\frac{a}{c+a}}{2}=3\)

NV
24 tháng 2 2020

a/ Biến đổi tương đương:

\(\Leftrightarrow3a^2-3ab+3b^2\ge a^2+ab+b^2\)

\(\Leftrightarrow2\left(a^2-2ab+b^2\right)\ge0\)

\(\Leftrightarrow2\left(a-b\right)^2\ge0\) (luôn đúng)

b/ \(\frac{a^3}{a^2+ab+b^2}=a-\frac{ab\left(a+b\right)}{a^2+ab+b^2}\ge a-\frac{ab\left(a+b\right)}{3\sqrt[3]{a^2.ab.b^2}}=a-\frac{a+b}{3}=\frac{2a}{3}-\frac{b}{3}\)

Tương tự: \(\frac{b^3}{b^2+bc+c^2}\ge\frac{2b}{3}-\frac{c}{3}\) ; \(\frac{c^3}{c^2+ca+a^2}\ge\frac{2c}{3}-\frac{a}{3}\)

Cộng vế với vế ta có đpcm

11 tháng 11 2019

Áp dụng BĐT Cauchy cho 3 số không âm:

\(\frac{a^3}{b}+\frac{a^3}{b}+b^2\ge3\sqrt[3]{\frac{a^3a^3b^2}{b^2}}=3a^2\)

\(\frac{b^3}{c}+\frac{b^3}{c}+c^2\ge3\sqrt[3]{\frac{b^3b^3c^2}{c^2}}=3b^2\)

\(\frac{c^3}{a}+\frac{c^3}{a}+a^2\ge3\sqrt[3]{\frac{c^3c^3a^2}{a^2}}=3c^2\)

Cộng từng vế của các BĐT trên, ta được:

\(2\left(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\right)+\left(a^2+b^2+c^2\right)\ge3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow2\left(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\right)\ge2\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge a^2+b^2+c^2\)(1)

Ta cần c/m: \(a^2+b^2+c^2\ge ab+bc+ac\)

Ta có: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(điều đúng)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)(2)

(Dấu "="\(\Leftrightarrow a=b=c\))

Từ (1) và (2) suy ra \(\Leftrightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ca\)

(Dấu "="\(\Leftrightarrow a=b=c\))

12 tháng 11 2019

Đúng rồi! Tham khảo thêm một cách nhé:

\(VT=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ac}\)  ( Svác - xơ )

\(\ge\frac{\left(ab+bc+ac\right)^2}{ab+bc+ac}=ab+bc+ac\)

"=" <=> a= b= c.