K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2017

vì x+y+z=1nên

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\)\(\frac{x+y+z}{x}+\frac{x+y+z}{y}+\frac{x+y+z}{z}\)\(=3+\left(\frac{x}{y}+\frac{y}{z}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)\)=\(3+\frac{x^2+y^2}{xy}+\frac{y^2+z^2}{yz}+\frac{x^2+z^2}{xz}\)

nen \(\frac{xy}{x^2+y^2}+\frac{yz}{y^2+z^2}+\frac{xz}{x^2+z^2}+\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\) =\(\left(\frac{xy}{x^2+y^2}+\frac{x^2+y^2}{4xy}\right)+\left(\frac{yz}{y^2+z^2}+\frac{y^2+z^2}{4yz}\right)+\left(\frac{xz}{x^2+z^2}+\frac{x^2+z^2}{xz}\right)+\frac{3}{4}\)

\(\ge2.\frac{1}{2}+\frac{2.1}{2}+\frac{2.1}{2}+\frac{3}{4}=\frac{15}{4}\)(dpcm)

dau = xay ra khi x=y=z=1/3

23 tháng 7 2016

Đặt  \(J=\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\)  với  \(\hept{\begin{cases}x,y,z>0\\x+y+z\le1\end{cases}}\left(i\right)\)

Áp dụng bất đẳng thức  \(B.C.S\)  cho hai bộ số thực không âm gồm có  \(\left(x^2;\frac{1}{x^2}\right)\)  và  \(\left(1^2+9^2\right),\) ta có:

\(\left(x^2+\frac{1}{x^2}\right)\left(1^2+9^2\right)\ge\left(x+\frac{9}{x}\right)^2\)

\(\Rightarrow\)  \(\sqrt{x^2+\frac{1}{x^2}}\ge\frac{1}{\sqrt{82}}\left(x+\frac{9}{x}\right)\)   \(\left(1\right)\)

Đơn giản thiết lập hai bất đẳng thức còn lại theo vòng hoán vị  \(y\rightarrow z\) , ta cũng có:

\(\sqrt{y^2+\frac{1}{y^2}}\ge\frac{1}{\sqrt{82}}\left(y+\frac{9}{y}\right)\)   \(\left(2\right);\)   \(\sqrt{z^2+\frac{1}{z^2}}\ge\frac{1}{\sqrt{82}}\left(z+\frac{9}{z}\right)\)  \(\left(3\right)\)

Cộng từng vế  các bđt  \(\left(1\right);\)  \(\left(2\right);\)  và  \(\left(3\right)\) , suy ra:

\(J\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z}\right)\)

Ta có:

\(K=x+y+z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z}\)

\(=\left(9x+\frac{1}{x}\right)+\left(9y+\frac{1}{y}\right)+\left(9z+\frac{1}{z}\right)+8\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-8\left(x+y+z\right)\)

Khi đó, áp dụng bđt Cauchy đối với từng ba biểu thức đầu tiên, tiếp tục với bđt Cauchy-Swarz dạng Engel cho biểu thức thứ tư, chú ý rằng điều kiện đã cho  \(\left(i\right)\) , ta có:

\(K\ge2\sqrt{9x.\frac{1}{x}}+2\sqrt{9y.\frac{1}{y}}+2\sqrt{9z.\frac{1}{z}}+\frac{72}{x+y+z}-8\left(x+y+z\right)\)

     \(=6+6+6+72-8=82\)

Do đó,  \(K\ge82\)

Suy ra  \(J\ge\frac{82}{\sqrt{82}}=\sqrt{82}\)  (đpcm)

Dấu   \("="\)  xảy ra  \(\Leftrightarrow\)  \(x=y=z=\frac{1}{3}\)

1 tháng 1 2020

\(\left(1.x+9.\frac{1}{y}\right)^2\le\left(1^2+9^2\right)\left(x^2+\frac{1}{y^2}\right)\Rightarrow\sqrt{x^2+\frac{1}{y^2}}\)

\(\ge\frac{1}{\sqrt{82}}\left(x+\frac{9}{y}\right)\)

\(TT:\sqrt{y^2+\frac{1}{z^2}}\ge\frac{1}{\sqrt{82}}\left(x+\frac{9}{z}\right);\sqrt{z^2+\frac{1}{x^2}}\ge\frac{1}{\sqrt{82}}\left(z+\frac{9}{x}\right)\)

\(S\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z}\right)\)

\(\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{81}{x+y+z}\right)\)

\(=\frac{1}{\sqrt{82}}\left[\left(x+y+z+\frac{1}{x+y+z}\right)+\frac{80}{x+y+z}\right]\ge\sqrt{82}\)

21 tháng 10 2019

Nhân cả 2 vế với xyz bất đẳng thức sẽ thành yz+ xz+xy+yz\(\sqrt{1+x^2}\)+xz\(\sqrt{1+y^2}+xy\sqrt{1+z^2}\le x^2y^2z^2\)

Ta có yz\(\sqrt{1+x^2}=\sqrt{yz}.\sqrt{yz+x^2yz}=\sqrt{yz}.\sqrt{yz+x\left(x+y+z\right)}=\)\(\sqrt{yz}.\sqrt{\left(x+y\right)\left(x+z\right)}\)\(\le\)\(yz+\frac{\left(x+y\right)\left(x+z\right)}{4}\)(2ab\(\le a^2+b^2\))

làm tương tự ta được xz\(\sqrt{1+x^2}\le xz+\frac{\left(x+y\right)\left(y+z\right)}{4};xy\sqrt{1+z^2}\le xy+\frac{\left(y+z\right)\left(z+x\right)}{4}.\)

vế trái \(\le\) 2(xy+yz+zx) + \(\frac{\left(x+y\right)\left(x+z\right)+\left(y+x\right)\left(y+z\right)+\left(z+x\right)\left(z+y\right)}{4}\)\(\le2.\frac{1}{3}.\left(x+y+z\right)^2+\frac{\frac{1}{3}\left(x+y+y+z+z+x\right)^2}{4}=\left(x+y+z\right)^2=x^2y^2z^2.\)

[ (a-b)2 +(b-c)2 +(c-a)2 \(\ge0\)<=>\(ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2\) áp dụng vào trên)

dấu '=' xảy ra khi x=y=z \(\sqrt{3}\)

16 tháng 9 2018

Với 2 số dương bất kì: ( 1 )

\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)Vì x và y dương nên \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\forall x;y\)

Áp dụng ( 1 ): \(\frac{4}{2x+y+z}=\frac{4}{\left(x+y\right)+\left(x+z\right)}\le\frac{1}{x+y}+\frac{1}{x+z}\)

Mà: \(\frac{1}{x+y}+\frac{1}{x+z}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{x}+\frac{1}{z}\right)=\frac{1}{4}\)\(=\frac{1}{4}\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Nên: \(\frac{1}{2x+y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Tương tự ta có: \(\frac{1}{x+2y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\right)\)

Và \(\frac{1}{x+y+2z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Cộng vế với vế các bất đẳng thức kết hợp với điều kiện \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4\) nên ta có đpcm