K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2019

\(H=\frac{1}{\left(x+1\right)^2+y^2+1}+\frac{1}{\left(y+1\right)^2+z^2+1}+\frac{1}{\left(z+1\right)^2+x^2+1}\)

\(\Leftrightarrow\)\(H=\frac{1}{\left(x+1\right)^2+\left(y+1\right)^2-2y}+\frac{1}{\left(y+1\right)^2+\left(z+1\right)^2-2z}+\frac{1}{\left(z+1\right)^2+\left(x+1\right)^2-2x}\)

Áp dụng BĐT AM-GM ta có:

\(H\le\frac{1}{2.\left(x+1\right)\left(y+1\right)-2y}+\frac{1}{2.\left(y+1\right)\left(z+1\right)-2z}+\frac{1}{2.\left(z+1\right)\left(x+1\right)-2x}\)

\(\Leftrightarrow H\le\frac{1}{2.\left(x+y+xy+1\right)-2y}+\frac{1}{2.\left(y+z+yz+1\right)-2z}+\frac{1}{2.\left(x+z+xz+1\right)-2x}\)

\(\Leftrightarrow H\le\frac{1}{2.\left(x+xy+1\right)}+\frac{1}{2.\left(y+yz+1\right)}+\frac{1}{2.\left(z+xz+1\right)}\)

\(\Leftrightarrow H\le\frac{1}{2}\left[\frac{xyz}{x\left(1+y+yz\right)}+\frac{1}{y+yz+1}+\frac{xyz}{xz\left(y+yz+1\right)}\right]\)

\(\Leftrightarrow H\le\frac{1}{2}\left[\frac{yz}{1+y+yz}+\frac{1}{y+yz+1}+\frac{y}{y+yz+1}\right]=\frac{1}{2}.1=\frac{1}{2}\)

Dấu " = " xảy ra <=> \(x=y=z=1\)

Vậy \(H_{max}=\frac{1}{2}\Leftrightarrow x=y=z=1\)

15 tháng 8 2020

dùng bunhia cho phần mẫu số là ra 

31 tháng 10 2018

cau a la bdt vas

con cau b la van dung he qua cua bdt vas

20 tháng 3 2019

@Akai Haruma, Nguyen, Nguyễn Thị Ngọc Thơsvtkvtm

AH
Akai Haruma
Giáo viên
20 tháng 3 2019

Bạn tham khảo tại đây:

Câu hỏi của Vũ Sơn Tùng - Toán lớp 9 | Học trực tuyến

6 tháng 2 2021

Áp dụng bất đẳng thức Cô-si, ta có: \(\left(3x+1\right)\left(y+z\right)+x=3xy+3xz+\left(x+y+z\right)\ge3xy+3xz+3\sqrt[3]{xyz}\)\(=3xy+3xz+3\Rightarrow\frac{1}{\left(3x+1\right)\left(y+z\right)+x}\le\frac{1}{3\left(xy+xz+1\right)}\)

Tiếp tục áp dụng bất đẳng thức dạng \(u^3+v^3\ge uv\left(u+v\right)\), ta được: \(\frac{1}{3\left(xy+xz+1\right)}=\frac{1}{3\left[x\left(\left(\sqrt[3]{y}\right)^3+\left(\sqrt[3]{z}\right)^3\right)+1\right]}\le\frac{1}{3\left[x\sqrt[3]{yz}\left(\sqrt[3]{y}+\sqrt[3]{z}\right)+1\right]}\)\(=\frac{\sqrt[3]{xyz}}{3\left[\sqrt[3]{x^2}\left(\sqrt[3]{y}+\sqrt[3]{z}\right)+\sqrt[3]{xyz}\right]}=\frac{\sqrt[3]{yz}}{3\left(\sqrt[3]{xy}+\sqrt[3]{yz}+\sqrt[3]{zx}\right)}\)

Tương tự rồi cộng lại theo vế, ta được: \(P\le\frac{1}{3}\)

Đẳng thức xảy ra khi x = y = z = 1

16 tháng 5 2018

\(\Sigma\dfrac{a^2}{\left(2a+b\right)\left(2a+c\right)}=\Sigma\left(\dfrac{1}{9}.\dfrac{a^2\left(2+1\right)^2}{2a.\left(\Sigma a\right)+2a^2+bc}\right)\le\Sigma\left(\dfrac{1}{9}.\dfrac{4a^2}{2a\left(\Sigma a\right)}+\dfrac{1}{9}.\dfrac{a^2}{2a^2+bc}\right)\)

\(=\Sigma\left(\dfrac{1}{9}.\left(\dfrac{2a}{\Sigma a}+\dfrac{a^2}{2a^2+bc}\right)\right)=\dfrac{1}{9}\left(2+\Sigma\dfrac{a^2}{2a^2+bc}\right)\)

Cần chứng minh \(\Sigma\frac{a^2}{2a^2+bc}\le1\)

<=> \(\Sigma\frac{bc}{2a^2+bc}\ge1\)         (*)

Đặt (x;y;z) ------->  \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\)

Suy ra (*)  <=>  \(\Sigma\frac{x^2}{x^2+2xy}\ge1\Leftrightarrow\frac{\Sigma x^2}{\Sigma x^2}\ge1\) (đúng)

Vậy \(\Sigma\frac{a^2}{2a^2+bc}\le1\)

Suy ra \(\Sigma\frac{a^2}{\left(2a+b\right)\left(2a+c\right)}\le\frac{1}{9}\left(2+\Sigma\frac{a^2}{2a^2+bc}\right)\le\frac{1}{9}\left(2+1\right)=\frac{1}{3}\)

Đẳng thức xảy ra <=> x = y = z = 1 

16 tháng 5 2018

Nguồn : Trần Thắng