K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2021

Thiếu đề nhé. Giả thiết đang còn có là x+y bé thua hoặc bằng 1

24 tháng 5 2022

\(x,y,z>0\)

Áp dụng BĐT Caushy cho 3 số ta có:

\(x^3+y^3+z^3\ge3\sqrt[3]{x^3y^3z^3}=3xyz\ge3.1=3\)

\(P=\dfrac{x^3-1}{x^2+y+z}+\dfrac{y^3-1}{x+y^2+z}+\dfrac{z^3-1}{x+y+z^2}\)

\(=\dfrac{\left(x^3-1\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)}+\dfrac{\left(y^3-1\right)^2}{\left(x+y^2+z\right)\left(y^3-1\right)}+\dfrac{\left(z^3-1\right)^2}{\left(x+y+z^2\right)\left(x^3-1\right)}\)

Áp dụng BĐT Caushy-Schwarz ta có:

\(P\ge\dfrac{\left(x^3+y^3+z^3-3\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)}\)

\(\ge\dfrac{\left(3-3\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)}=0\)

\(P=0\Leftrightarrow x=y=z=1\)

Vậy \(P_{min}=0\)

NV
2 tháng 3 2021

\(M=3\left(\dfrac{1}{2xy}+\dfrac{1}{x^2+y^2}\right)+\dfrac{1}{2xy}\ge\dfrac{12}{2xy+x^2+y^2}+\dfrac{2}{\left(x+y\right)^2}=\dfrac{14}{\left(x+y\right)^2}=14\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

2 tháng 3 2021

Áp dụng bđt đã cho ta có \(M=4\left(\dfrac{1}{2xy}+\dfrac{1}{x^2+y^2}\right)-\dfrac{1}{x^2+y^2}\ge\dfrac{16}{2xy+x^2+y^2}-\dfrac{2}{\left(x+y\right)^2}=\dfrac{16}{\left(x+y\right)^2}-\dfrac{2}{\left(x+y\right)^2}=14\).

Đẳng thức xảy ra khi và chỉ khi \(x=y=\dfrac{1}{2}\)

1:

a: =>28x-8=9x+3

=>19x=11

=>x=11/19

b: =>(3x-1)(x-1)=(2x+1)(x+1)

=>3x^2-4x+1=2x^2+3x+1

=>x^2-7x=0

=>x=0 hoặc x=7

NV
16 tháng 2 2022

Đề bài sai, C không có giá trị nhỏ nhất

Nếu \(\dfrac{1}{x^2}+\dfrac{1}{y^2}=\dfrac{1}{2}\) thì có thể tìm được min của C

12 tháng 2 2022

\(\dfrac{2xy}{x^2+4y^2}+\dfrac{y^2}{3x^2+2y^2}\le\dfrac{3}{5}\)

<=> \(\left(\dfrac{2}{5}-\dfrac{2xy}{x^2+4y^2}\right)+\left(\dfrac{1}{5}-\dfrac{y^2}{3x^2+2y^2}\right)\ge0\)

<=> \(\dfrac{2x^2+8y^2-10xy}{x^2+4y^2}+\dfrac{3x^2+2y^2-5y^2}{3x^2+2y^2}\ge0\)

<=> \(\dfrac{2\left(x-4y\right)\left(x-y\right)}{x^2+4y^2}+\dfrac{3\left(x+y\right)\left(x-y\right)}{3x^2+2y^2}\ge0\)

<=> \(\left(x-y\right)\left[\dfrac{2\left(x-4y\right)}{x^2+4y^2}+\dfrac{3\left(x+y\right)}{3x^2+2y^2}\right]\ge0\) (1)

Xét \(\dfrac{2\left(x-4y\right)}{x^2+4y^2}+\dfrac{3\left(x+y\right)}{3x^2+2y^2}=\dfrac{2\left(x-4y\right)\left(3x^2+2y^2\right)+3\left(x+y\right)\left(x^2+4y^2\right)}{\left(x^2+4y^2\right)\left(3x^2+2y^2\right)}\)

\(\dfrac{9x^3+16xy^2-21x^2y-4y^3}{\left(x^2+4y^2\right)\left(3x^2+2y^2\right)}=\dfrac{\left(x-y\right)\left(3x-2y\right)^2}{\left(x^2+4y^2\right)\left(3x^2+2y^2\right)}\)

(1) <=> \(\dfrac{\left(x-y\right)^2\left(3x-2y\right)^2}{\left(x^2+4y^2\right)\left(3x^2+2y^2\right)}\ge0\) (luôn đúng)

=> \(A\le\dfrac{3}{5}\)

Dấu "=" xảy ra \(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=\dfrac{2}{3}y\end{matrix}\right.\)

NV
25 tháng 1

\(\sqrt{x^2+2024}=\sqrt{x^2+xy+yz+zx}=\sqrt{\left(x+y\right)\left(z+x\right)}\ge\sqrt{\left(\sqrt{xz}+\sqrt{xy}\right)^2}=\sqrt{xy}+\sqrt{xz}\)

Tương tự: \(\sqrt{y^2+2024}\ge\sqrt{xy}+\sqrt{yz}\)

\(\sqrt{z^2+2024}\ge\sqrt{xz}+\sqrt{yz}\)

Cộng vế:

\(P\ge\dfrac{2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)}{\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}=2\)

Dấu "=" xảy ra khi \(x=y=z=\dfrac{2024}{3}\)

AH
Akai Haruma
Giáo viên
27 tháng 9 2023

Lời giải:

Từ $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0$

$\Rightarrow xy+yz+xz=0$

Khi đó:

$x^2+2yz=x^2+yz-xz-xy=(x^2-xy)-(xz-yz)=x(x-y)-z(x-y)=(x-z)(x-y)$

Tương tự với $y^2+2zx, z^2+2xy$ thì:

$P=\frac{yz}{(x-z)(x-y)}+\frac{xz}{(y-z)(y-x)}+\frac{xy}{(z-x)(z-y)}$

$=\frac{-yz(y-z)-xz(z-x)-xy(x-y)}{(x-y)(y-z)(z-x)}=\frac{-[yz(y-z)+xz(z-x)+xy(x-y)]}{-[xy(x-y)+yz(y-z)+xz(z-x)]}=1$

2 tháng 8 2023

Với x,y là số thực lớn hơn 0,13 ta có:

\(\left(xy+yz+zx\right)^2\) 

\(=\left(xy\right)^2+\left(yz\right)^2+\left(zx\right)^2+2xyyz+2xyzx+2yzzx\) 

Vì x,y,z đều là số thực dương lớn hơn 0 nên:

\(\left(xy\right)^2,\left(yz\right)^2,\left(zx\right)^2,2xyyz,2xyzx,2yzzx\) đều lớn hơn 0

Vậy \(\left(xy+yz+zx\right)^2>0\)