K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2018

\(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{2015}\right)\)

\(=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot...\cdot\frac{2016}{2015}\)

\(=\frac{2016}{2}\)

\(=1008\) 

Chúng ta hãy tính toán \ int \ cos ^ n xdx trong đó n là một số nguyên dương. Trong bảng sau, cột đầu tiên biểu diễn \ cos ^ {n-1} x và dẫn xuất của nó, và cột thứ hai đại diện cho \ cos x và tích phân của nó. 
$$ \ begin {array} {ccc} 
\ cos ^ {n-1} x & & \ cos x \\ 
& \ stackrel {+} {\ searrow} & \\ 
- (n-1) \ cos ^ {n-2} x \ sin x & \ stackrel {-} {\ longrightarrow} & \ sin x \\ 
\ end {array} $$ 
Bằng cách tích hợp theo các bộ phận , chúng tôi có 
\ begin {align *} 
\ int \ cos ^ n xdx & = \ cos ^ {n-1} x \ sin x + (n-1) \ int \ cos ^ {n-2} x \ sin ^ 2xdx \\ 
(n-1) x \ sin x + (n-1) \ int \ cos ^ {n-2} xdx- (n-1) \ int \ cos ^ {n-1} xdx + C ' 
\ end {align *} 
trong đó C ' là hằng số. Giải quyết điều này với \ int \ cos ^ nxdx , chúng ta có được 
\ begin {equation} 
\ label {eq: cosred} 
\ int \ cos \ n \ n \ n \ n \ n \ n \ n \ n \ C 
\ end {equation} 
trong đó C = \ frac {C '} {n} . Công thức như \ eqref (eq: cosred) được gọi là công thức giảm .Tương tự, chúng ta có các công thức giảm dưới đây. 
\ begin {align} 
\ int \ sin ^ n xdx & = - \ frac {1} {n} \ sin ^ {n-1} x \ cos x + \ frac {n-1} {n} \ int \ sin ^ {n-2} dx \\ 
\ n \ n \ n \ n \ n \ n \ n \ n \ n \ n \ n \ n \ n \ n \ n \ n \ n \ n \ n \ n \ n \ n \ n \ n \ n \ n \ n \ 
\ int \ sec ^ nxdx & = \ frac {1} {n-1} \ sec ^ {n-2} x \ tan x + \ frac {n-2} {n-1} \ int \ sec ^ {n-2 } xdx, \ n \ ne 1 
\ end {align} 
Ví dụ . Sử dụng công thức giảm \ eqref {eq: cosred} để đánh giá \ int \ cos ^ 3xdx .

Giải pháp . 
\ begin {align *} 
\ int \ cos ^ 3xdx & = \ frac {1} {3} \ cos ^ 2x \ sin x + \ frac {2} {3} \ int \ cos xdx \\ 
\ frac {2} {3} \ sin x + C, 
\ end {align *} 
trong đó C là hằng số.

Tích hợp như ví dụ sau là khá phức tạp.

Ví dụ . Đánh giá \ int \ sec xdx .

Giải pháp . 
\ begin {align *} 
\ int \ sec xdx & = \ int \ sec x \ frac {\ sec x + \ tan x} {\ sec x + \ tan x} dx \\ 
& = \ int \ frac {\ sec ^ 2x + \ sec x \ tan x} {\ sec x + \ tan x} dx \\ 
& = \ frac {du} {u} \ (\ mbox {substitution} \ u = \ sec + \ tan x) \\ 
& = \ ln | u | + C \\ 
& = \ ln | \ sec x + \ tan x | + C, 
\ end {align *} 
trong đó C là hằng số.

Ví dụ . Đánh giá \ int \ csc xdx .

Giải pháp . Nó có thể được thực hiện tương tự như ví dụ trước. 
\ begin {align *} 
\ int \ csc xdx & = \ int \ csc x \ frac {\ csc x + \ cot x} {\ csc x + \ cot x} dx \\ 
& = - \ ln | \ csc x + \ cot x | + C, 
\ end {align *} 
trong đó C là hằng số.Chúng ta hãy tính toán \ int \ cos ^ n xdx trong đó n là một số nguyên dương. Trong bảng sau, cột đầu tiên biểu diễn \ cos ^ {n-1} x và dẫn xuất của nó, và cột thứ hai đại diện cho \ cos x và tích phân của nó. 

$$ \ begin {array} {ccc} 
\ cos ^ {n-1} x & & \ cos x \\ 
& \ stackrel {+} {\ searrow} & \\ 
- (n-1) \ cos ^ {n-2} x \ sin x & \ stackrel {-} {\ longrightarrow} & \ sin x \\ 
\ end {array} $$ 
Bằng cách tích hợp theo các bộ phận , chúng tôi có 
\ begin {align *} 
\ int \ cos ^ n xdx & = \ cos ^ {n-1} x \ sin x + (n-1) \ int \ cos ^ {n-2} x \ sin ^ 2xdx \\ 
(n-1) x \ sin x + (n-1) \ int \ cos ^ {n-2} xdx- (n-1) \ int \ cos ^ {n-1} xdx + C ' 
\ end {align *} 
trong đó C ' là hằng số. Giải quyết điều này với \ int \ cos ^ nxdx , chúng ta có được 
\ begin {equation} 
\ label {eq: cosred} 
\ int \ cos \ n \ n \ n \ n \ n \ n \ n \ n \ C 
\ end {equation} 
trong đó C = \ frac {C '} {n} . Công thức như \ eqref (eq: cosred) được gọi là công thức giảm .Tương tự, chúng ta có các công thức giảm dưới đây. 
\ begin {align} 
\ int \ sin ^ n xdx & = - \ frac {1} {n} \ sin ^ {n-1} x \ cos x + \ frac {n-1} {n} \ int \ sin ^ {n-2} dx \\ 
\ n \ n \ n \ n \ n \ n \ n \ n \ n \ n \ n \ n \ n \ n \ n \ n \ n \ n \ n \ n \ n \ n \ n \ n \ n \ n \ n \ 
\ int \ sec ^ nxdx & = \ frac {1} {n-1} \ sec ^ {n-2} x \ tan x + \ frac {n-2} {n-1} \ int \ sec ^ {n-2 } xdx, \ n \ ne 1 
\ end {align} 
Ví dụ . Sử dụng công thức giảm \ eqref {eq: cosred} để đánh giá \ int \ cos ^ 3xdx .

Giải pháp . 
\ begin {align *} 
\ int \ cos ^ 3xdx & = \ frac {1} {3} \ cos ^ 2x \ sin x + \ frac {2} {3} \ int \ cos xdx \\ 
\ frac {2} {3} \ sin x + C, 
\ end {align *} 
trong đó C là hằng số.

Tích hợp như ví dụ sau là khá phức tạp.

Ví dụ . Đánh giá \ int \ sec xdx .

Giải pháp . 
\ begin {align *} 
\ int \ sec xdx & = \ int \ sec x \ frac {\ sec x + \ tan x} {\ sec x + \ tan x} dx \\ 
& = \ int \ frac {\ sec ^ 2x + \ sec x \ tan x} {\ sec x + \ tan x} dx \\ 
& = \ frac {du} {u} \ (\ mbox {substitution} \ u = \ sec + \ tan x) \\ 
& = \ ln | u | + C \\ 
& = \ ln | \ sec x + \ tan x | + C, 
\ end {align *} 
trong đó C là hằng số.

Ví dụ . Đánh giá \ int \ csc xdx .

Giải pháp . Nó có thể được thực hiện tương tự như ví dụ trước.  
\ begin {align *} 
\ int \ csc xdx & = \ int \ csc x \ frac {\ csc x + \ cot x} {\ csc x + \ cot x} dx \\ 
& = - \ ln | \ csc x + \ cot x | + C, 
\ end {align *} 
trong đó C là hằng số.

3 tháng 4 2018

Ta có : 

\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{2016}\right)\)

\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{2015}{2016}\)

\(A=\frac{2.3.4.....2015}{2.3.4.....2015}.\frac{1}{2016}\)

\(A=\frac{1}{2016}\)

Vậy \(A=\frac{1}{2016}\)

Chúc bạn học tốt ~ 

8 tháng 6 2018

\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)..\left(1-\frac{1}{2016}\right)\)

\(\Rightarrow A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2015}{2016}\)

\(\Rightarrow A=\frac{1.2.3..2015}{2.3.4..2016}\)

\(\Rightarrow A=\frac{1}{2016}\)

12 tháng 4 2016

\(A=\left(-\frac{1}{2}\right).\left(-\frac{2}{3}\right).\left(-\frac{3}{4}\right)......\left(-\frac{2013}{2014}\right)=\left(-\frac{1}{2014}\right)\) (Do các thừa số đều âm và A có (2014-2)+1=2013 thừa số nên A mang giá trị âm)

\(B=-\frac{1}{2015}\)

=> A<B (|A|>|B|)

26 tháng 3 2016

Câu A mình làm được nhưng dài quá

B=\(\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).............\left(1+\frac{1}{2015}\right)\)

=\(\frac{3}{2}.\frac{4}{3}..............\frac{2016}{2015}\)

=\(\frac{3.4...............2016}{2.3................2015}\)

=\(\frac{2016}{2}=1008\)

10 tháng 3 2016

TA CÓ

y=1/2.2/3.3/4..............2013/2014.2014/2015

y=(1.2.3...............2014)/(2.3.4..............2015)

y=1/2015

2 tháng 5 2018

\(H=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\left(1-\frac{1}{5}\right)\cdot\cdot\cdot\cdot\cdot\left(1-\frac{1}{100}\right)\)

\(\Leftrightarrow H=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}\cdot\cdot\cdot\cdot\cdot\frac{99}{100}\)

\(\Leftrightarrow H=\frac{1.2.3.4.....99}{2.3.4.5.....100}\)

\(\Leftrightarrow H=\frac{1}{100}\)

2 tháng 5 2018

\(H=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{99}{100}\)

\(H=\frac{1.2.3.4...99}{2.3.4.5...100}\)

\(H=\frac{1}{100}\)

Vậy \(H=\frac{1}{100}.\)

11 tháng 4 2015

\(\Rightarrow2A=1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{2014}\)

\(\Rightarrow2A-A=A=1-\left(\frac{1}{2}\right)^{2015}\)

Với B tương tự nhưng là lấy 3B

15 tháng 8 2015

\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2015}\right)\)

\(=\left(\frac{2}{2}-\frac{1}{2}\right).\left(\frac{3}{3}-\frac{1}{3}\right).\left(\frac{4}{4}-\frac{1}{4}\right)...\left(\frac{2015}{2015}-\frac{1}{2015}\right)\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2014}{2015}\)

\(=\frac{1}{2015}\)