K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2019

\(x\sqrt{x}+y\sqrt{y}+z\sqrt{z}=\frac{x^2}{\sqrt{x}}+\frac{y^2}{\sqrt{y}}+\frac{z^2}{\sqrt{z}}\)   (1)

Áp dụng BDT Cauchy-Schwarz: 

\(\left(1\right)\ge\frac{\left(x+y+z\right)^2}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=\frac{1}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

Ta lại có: \(x+y+z\ge\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{3}\Leftrightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}\le3\)

Thay vào ta có \(\left(1\right)\ge\frac{1}{\sqrt{3}}\)

Dấu = xảy ra khi x=y=z=1/3

25 tháng 10 2019

\(27x^3\sqrt{x}+27y^3\sqrt{y}+27z^3\sqrt{z}+\sqrt{x}+\sqrt{y}+\sqrt{z}\ge6\sqrt{3}\left(x^2+y^2+z^2\right)\)

Lại có: \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}=\frac{1}{3}\)

Thay vào -> dpcm

9 tháng 4 2021

ĐỊT MẸ

20 tháng 11 2019

Ta có: \(\frac{1}{2}.2x\left(1-x\right)\left(1-x\right)\le\frac{1}{2}\left[\frac{2x+1-x+1-x}{3}\right]^3=\frac{4}{27}\)

\(\Rightarrow\sqrt{x}\left(1-x\right)\le\frac{2\sqrt{3}}{9}\Rightarrow\frac{1}{\sqrt{x}\left(1-x\right)}\ge\frac{9}{2\sqrt{3}}\)

\(\Rightarrow\frac{\sqrt{x}}{1-x}\ge\frac{3\sqrt{3}}{2}x\). Thiết lập tương tự hai BĐT còn lại và cộng theo vế thu được đpcm.

20 tháng 3 2019

có biết huệ ko

13 tháng 8 2016

Tự chế

13 tháng 8 2016

j

1 tháng 1 2023

Đặt \(\left\{{}\begin{matrix}a=\sqrt{x+y-z}\\b=\sqrt{y+z-x}\\c=\sqrt{z+x-y}\end{matrix}\right.\). Vì x,y,z là độ dài 3 cạnh của tam giác nên a,b,c luôn có nghĩa.

\(\Rightarrow\left\{{}\begin{matrix}a^2=x+y-z\\b^2=y+z-x\\c^2=z+x-y\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{c^2+a^2}{2}\\y=\dfrac{a^2+b^2}{2}\\z=\dfrac{b^2+c^2}{2}\end{matrix}\right.\)

Bất đẳng thức cần chứng minh trở thành:

\(\dfrac{c^2+a^2}{2a}+\dfrac{a^2+b^2}{2b}+\dfrac{b^2+c^2}{2c}\ge\sqrt{\dfrac{c^2+a^2}{2}}+\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{\dfrac{b^2+c^2}{2}}\)

Theo BĐT Bunhiacopxki ta có:

\(\left(\dfrac{c^2+a^2}{2a}+\dfrac{a^2+b^2}{2b}+\dfrac{b^2+c^2}{2c}\right)\left(a+b+c\right)\ge\left(\sqrt{\dfrac{c^2+a^2}{2}}+\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{\dfrac{b^2+c^2}{2}}\right)^2\)

\(\Rightarrow\dfrac{c^2+a^2}{2a}+\dfrac{a^2+b^2}{2b}+\dfrac{b^2+c^2}{2c}\ge\dfrac{\left(\sqrt{\dfrac{c^2+a^2}{2}}+\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{\dfrac{b^2+c^2}{2}}\right)^2}{a+b+c}\)Ta chỉ cần chứng minh BĐT sau là bài toán đc giải quyết:

\(\dfrac{\left(\sqrt{\dfrac{c^2+a^2}{2}}+\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{\dfrac{b^2+c^2}{2}}\right)^2}{a+b+c}\ge\sqrt{\dfrac{c^2+a^2}{2}}+\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{\dfrac{b^2+c^2}{2}}\)

\(\Leftrightarrow\sqrt{\dfrac{c^2+a^2}{2}}+\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{\dfrac{b^2+c^2}{2}}\ge a+b+c\left(1\right)\)

Ta có BĐT: \(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\)

\(\Rightarrow\sqrt{\dfrac{a^2+b^2}{2}}\ge\dfrac{a+b}{2}\)

Tương tự: \(\left\{{}\begin{matrix}\sqrt{\dfrac{b^2+c^2}{2}}\ge\dfrac{b+c}{2}\\\sqrt{\dfrac{c^2+a^2}{2}}\ge\dfrac{c+a}{2}\end{matrix}\right.\)

Cộng vế theo vế của các BĐT trên ta có BĐT (1) đúng.

\(\Rightarrowđpcm\). Dấu "=" xảy ra khi \(x=y=z\)

 

31 tháng 7 2020

bài 2 tham khảo câu V đề thi vòng 1 trường THPT chuyên đại học sư phạm năm học 2013-2014

18 tháng 12 2015

bài này dễ nhưng bạn phải chứng minh bđt này đã:

\(\frac{1}{a+b+c+d}\le\frac{1}{16}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)\)

với a;b;c;d là các số dương

bạn có thể cm bđt trên bằng cách biến đổi tương đương hoặc cm bđt Schwat (Sơ-vác)

Mình là 1 phần tử đại diện còn lại là hoàn toàn tt nhé 

ta có \(\frac{1}{3\sqrt{x}+3\sqrt{y}+2\sqrt{z}}=\frac{1}{2\left(\sqrt{x}+\sqrt{y}\right)+\left(\sqrt{y}+\sqrt{z}\right)+\left(\sqrt{x}+\sqrt{z}\right)}\)

\(\le\frac{1}{16}\left(\frac{1}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{y}+\sqrt{z}}+\frac{1}{\sqrt{x}+\sqrt{z}}\right)\)

Tương tự ta cm được 

\(VT\le\frac{1}{16}.4\left(\frac{1}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{y}+\sqrt{z}}+\frac{1}{\sqrt{z}+\sqrt{x}}\right)\)\(=\frac{1}{4}.3=\frac{3}{4}\)

dấu "=" khi x=y=z