K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2020

ta có: \(\sqrt{a}+\sqrt{b}<=\sqrt{2(a+b)}\)

(bđt chứng minh đơn giản bằng biến đổi tương đương)

dấu bằng xảy ra khi và chỉ khi a=b

=> P = 1/2 + 1/2 = 1

13 tháng 9 2020

\(\sqrt{a}+\sqrt{b}=\sqrt{2\left(a+b\right)}\Rightarrow\left(\sqrt{a}+\sqrt{b}\right)^2=\left(\sqrt{2\left(a+b\right)}\right)^2\)

\(\Leftrightarrow a+b+2\sqrt{ab}=2\left(a+b\right)\Leftrightarrow a+b=2\sqrt{ab}\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2=0\)

\(\Leftrightarrow a=b\)

\(\Rightarrow P=\sqrt{\frac{a}{a+3b}}+\sqrt{\frac{b}{b+3a}}=\sqrt{\frac{a}{a+3a}}+\sqrt{\frac{a}{a+3a}}=\sqrt{\frac{1}{4}}+\sqrt{\frac{1}{4}}\)

\(=\frac{1}{2}+\frac{1}{2}=1\)

4 tháng 3 2020

\(\left(a+3b\right)\left(b+3a\right)\le\left(\frac{4a+4b}{2}\right)^2=\left(2a+2b\right)^2\)

=>\(\frac{1}{2}\sqrt{\left(a+3b\right)\left(b+3a\right)}\le\frac{1}{2}\left(2a+2b\right)=a+b\)

Mình làm phần dễ nhất rồi, còn lại của bạn đó ^^


 

6 tháng 4 2020

Đặt . Do đó . Cần chứng minh:

Or $3(x^2+y^2)^2 -(x^2+y^2)+4x^2 y^2 \geqq \frac{1}{2} \sqrt{3(x^4+y^4)+10x^2 y^2} $

Bình phương 2 vế và xét hiệu, ta cần chứng minh:

$ \left( 1/4-xy \right) \left( 256\, \left( 1/4-xy \right) ^{3}+64\,
 \left( 1/4-xy \right) ^{2}+5-16\,xy \right)\geqq 0$

Đó là điều hiển nhiên vì: $xy \leqq 1/4 (x+y)^2 =1/4$

Done.

6 tháng 8 2020

\(P=\frac{3a+3b+2c}{\sqrt{6\left(a^2+5\right)}+\sqrt{6\left(b^2+5\right)}+\sqrt{c^2+5}}\)

\(=\frac{3a+3b+2c}{\sqrt{6\left(a^2+ab+bc+ca\right)}+\sqrt{6\left(b^2+ab+bc+ca\right)}+\sqrt{c^2+ab+bc+ca}}\)(Do ab + bc + ca = 5)

\(=\frac{3a+3b+2c}{\sqrt{6\left(a+b\right)\left(a+c\right)}+\sqrt{6\left(b+a\right)\left(b+c\right)}+\sqrt{\left(c+a\right)\left(c+b\right)}}\)

Áp dụng BĐT AM - GM, ta được:

\(\sqrt{6\left(a+b\right)\left(a+c\right)}=2\sqrt{\frac{6}{4}\left(a+b\right)\left(a+c\right)}\)\(\le\frac{6}{4}\left(a+b\right)+\left(a+c\right)=\frac{5}{2}a+\frac{6}{4}b+c\)

\(\sqrt{6\left(b+a\right)\left(b+c\right)}=2\sqrt{\frac{6}{4}\left(b+a\right)\left(b+c\right)}\)\(\le\frac{6}{4}\left(a+b\right)+\left(b+c\right)=\frac{6}{4}a+\frac{5}{2}b+c\)

\(\sqrt{\left(c+a\right)\left(c+b\right)}\le\frac{\left(c+a\right)+\left(c+b\right)}{2}=c+\frac{a}{2}+\frac{b}{2}\)

Cộng theo vế của 3 BĐT trên, ta được: \(\sqrt{6\left(a+b\right)\left(a+c\right)}+\sqrt{6\left(b+a\right)\left(b+c\right)}+\sqrt{\left(c+a\right)\left(c+b\right)}\)\(\le\frac{9}{2}a+\frac{9}{2}b+3c\)

\(\Rightarrow\frac{3a+3b+2c}{\sqrt{6\left(a+b\right)\left(a+c\right)}+\sqrt{6\left(b+a\right)\left(b+c\right)}+\sqrt{\left(c+a\right)\left(c+b\right)}}\)\(\ge\frac{3a+3b+2c}{\frac{9}{2}a+\frac{9}{2}b+3c}=\frac{2}{3}\)

Đẳng thức xảy ra khi \(a=b=1;c=2\)

8 tháng 1 2020

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\)

\(=abc+a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+abc+abc\)

\(=\left(a+b+c\right)\left(ab+bc+ca\right)\)( phân tích nhân tử các kiểu )

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(a+b+c\right)\left(ab+bc+ca\right)-abc\left(1\right)\)

\(a+b+c\ge3\sqrt[3]{abc};ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)

\(\Rightarrow-abc\ge\frac{-\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)

Khi đó:\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)

\(=\frac{8\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\left(2\right)\)

Từ ( 1 ) và ( 2 ) có đpcm

10 tháng 9 2017

Sang học 24 tìm ai tên Perfect Blue nhé t làm bên đó rồi đưa link thì lỗi ==" , tìm tên đăng nhập  springtime ấy

10 tháng 9 2017

Chào bác Thắng

2 tháng 8 2020

Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\)thì \(x,y,z>0\)và ta cần chứng minh \(\frac{x}{\sqrt{3zx+yz}}+\frac{y}{\sqrt{3xy+zx}}+\frac{z}{\sqrt{3yz+xy}}\ge\frac{3}{2}\)\(\Leftrightarrow\frac{x^2}{x\sqrt{3zx+yz}}+\frac{y^2}{y\sqrt{3xy+zx}}+\frac{z^2}{z\sqrt{3yz+xy}}\ge\frac{3}{2}\)

Áp dụng BĐT Cauchy-Schwarz dạng phân thức, ta có: \(\frac{x^2}{x\sqrt{3zx+yz}}+\frac{y^2}{y\sqrt{3xy+zx}}+\frac{z^2}{z\sqrt{3yz+xy}}\ge\)\(\frac{\left(x+y+z\right)^2}{x\sqrt{3zx+yz}+y\sqrt{3xy+zx}+z\sqrt{3yz+xy}}\)

Áp dụng BĐT Cauchy-Schwarz, ta có: \(x\sqrt{3zx+yz}+y\sqrt{3xy+zx}+z\sqrt{3yz+xy}\)\(=\sqrt{x}.\sqrt{3zx^2+xyz}+\sqrt{y}.\sqrt{3xy^2+xyz}+\sqrt{y}.\sqrt{3yz^2+xyz}\)\(\le\sqrt{\left(x+y+z\right)\left[3\left(xy^2+yz^2+zx^2+xyz\right)\right]}\)

Ta cần chứng minh \(\sqrt{\left(x+y+z\right)\left[3\left(xy^2+yz^2+zx^2+xyz\right)\right]}\le\frac{2}{3}\left(x+y+z\right)^2\)

\(\Leftrightarrow\left(x+y+z\right)^4\ge\frac{9}{4}\left(x+y+z\right)\left[3\left(xy^2+yz^2+zx^2+xyz\right)\right]\)

\(\Leftrightarrow\left(x+y+z\right)^3\ge\frac{27}{4}\left(xy^2+yz^2+zx^2+xyz\right)\)(*)

Không mất tính tổng quát, giả sử \(y=mid\left\{x,y,z\right\}\)thì khi đó \(\left(y-x\right)\left(y-z\right)\le0\Leftrightarrow y^2+zx\le xy+yz\)

\(\Leftrightarrow xy^2+zx^2\le x^2y+xyz\Leftrightarrow xy^2+yz^2+zx^2+xyz\le\)\(x^2y+yz^2+2xyz=y\left(z+x\right)^2=4y.\frac{z+x}{2}.\frac{z+x}{2}\)

\(\le\frac{4}{27}\left(y+\frac{z+x}{2}+\frac{z+x}{2}\right)^3=\frac{4\left(x+y+z\right)^3}{27}\)

Như vậy (*) đúng

Đẳng thức xảy ra khi a = b = c

13 tháng 12 2020

hello nha

13 tháng 12 2020

2k? vậy ạ

14 tháng 11 2017

\(\frac{2\left(a+b\right)}{\sqrt{4a\left(3a+b\right)}+\sqrt{4b\left(3b+a\right)}}\) \(\ge\frac{2\left(a+b\right)}{\frac{4a+3a+b}{2}+\frac{4b+3b+a}{2}}=\frac{2\left(a+b\right)}{\frac{8\left(a+b\right)}{2}}=\frac{1}{2}\)

dau = xay ra khi a=b