K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2019

Cần CM: \(\frac{1}{9-a}-\frac{12}{a^2+63}\ge\frac{1}{144}a^2-\frac{1}{16}\) (1) 

\(\Leftrightarrow\)\(\frac{a^2+12a-45}{\left(9-a\right)\left(a^2+63\right)}\ge\frac{1}{144}a^2-\frac{1}{16}\)

\(\Leftrightarrow\)\(144\left(a^2+12a-45\right)\ge\left(a-3\right)\left(a+3\right)\left(9-a\right)\left(a^2+63\right)\)

\(\Leftrightarrow\)\(\left(a-3\right)\left[144\left(a+15\right)-\left(a+3\right)\left(9-a\right)\left(a^2+63\right)\right]\ge0\)

\(\Leftrightarrow\)\(\left(a-3\right)\left(a^4-6a^3+36a^2-234a+459\right)\ge0\)

\(\Leftrightarrow\)\(\left(a-3\right)^2\left(a^3-3a^2+27a+153\right)\ge0\)

\(\Leftrightarrow\)\(\left(a-3\right)^2\left[\left(a-3\right)^2\left(a+3\right)+36a+126\right]\ge0\) ( đúng )

Do đó (1) đúng => \(\Sigma_{cyc}\frac{1}{9-a}-\Sigma_{cyc}\frac{12}{a^2+63}\ge\frac{1}{144}\left(a^2+b^2+c^2\right)-\frac{3}{16}=0\)

\(\Rightarrow\)\(\Sigma_{cyc}\frac{12}{a^2+63}\le\Sigma_{cyc}\frac{1}{9-a}\le\Sigma_{cyc}\frac{1}{a+b}\) ( do \(a+b+c\le9\) ) 

Dấu "=" xảy ra khi a=b=c=3 

12 tháng 10 2020

a.\(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}>\frac{2}{\sqrt{n}+\sqrt{n+1}}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{n+1-n}=2\left(\sqrt{n+1}+\sqrt{n}\right)\)

áp dụng công thức cho biểu thức A có A>\(2\left(-\sqrt{2}+\sqrt{26}\right)>7\left(1\right)\)

(so sánh bình phương 2 số sẽ ra nha)

\(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}< \frac{2}{\sqrt{n}+\sqrt{n-1}}=\frac{2\left(\sqrt{n}-\sqrt{n-1}\right)}{n-n+1}=2\left(\sqrt{n}-\sqrt{n-1}\right)\)

áp dụng công thức cho biểu thức A ta CM được

A<\(2\left(\sqrt{2}-\sqrt{2-1}+\sqrt{3}-\sqrt{3-1}+...+\sqrt{25}-\sqrt{25-1}\right)\)

=\(2\left(-\sqrt{1}+\sqrt{25}\right)=2\left(-1+5\right)=2\cdot4=8\left(2\right)\)

từ (1) và (2) => ĐPCM

b. tương tự câu a ta CM đc BT đã cho=B>\(2\sqrt{51}-2\)> \(5\sqrt{2}\left(1\right)\)

và B<\(2\sqrt{50}=\sqrt{2}\cdot\sqrt{2\cdot50}=10\sqrt{2}\left(2\right)\)

từ (1) và (2)=>ĐPCM

(bạn nhớ phải biến đổi 1 thành 1/\(\sqrt{1}\) trc khi áp dụng công thức nha)

MỜI BẠN THAM KHẢO

7 tháng 8 2019

Áp dụng BĐT cosi ta có

\(\frac{1}{a^3}+\frac{1}{a^3}+\frac{1}{b^3}\ge\frac{3}{a^2b}\)\(\frac{1}{b^3}+\frac{1}{b^3}+\frac{1}{c^3}\ge\frac{3}{b^2c}\)\(\frac{1}{c^3}+\frac{1}{c^3}+\frac{1}{d^3}\ge\frac{3}{c^2d}\)

\(\frac{1}{d^3}+\frac{1}{d^3}+\frac{1}{a^3}\ge\frac{3}{d^2a}\)

Cộng các BĐt trên ta có 

\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\ge\frac{1}{a^2b}+\frac{1}{b^2c}+\frac{1}{c^2d}+\frac{1}{d^2a}\)(1)

Áp dụng BĐT buniacoxki ta có

\(\left(\frac{a^2}{b^5}+\frac{b^2}{c^5}+\frac{c^2}{d^5}+\frac{d^2}{a^5}\right)\left(\frac{1}{a^2b}+\frac{1}{b^2c}+\frac{1}{c^2d}+\frac{1}{d^2a}\right)\ge \left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\right)^2\)

Kết hợp với (1)  ta được ĐPCM

Dấu bằng xảy ra khi a=b=c

27 tháng 9 2019

a) \(\sqrt{3+\sqrt{5}}\)\(-\sqrt{3-\sqrt{5}}\)\(=\frac{\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}}{\sqrt{2}}\)\(=\frac{\left|\sqrt{5}+1\right|-\left|\sqrt{5}-1\right|}{\sqrt{2}}\)\(=\)\(\frac{\sqrt{5}+1-\sqrt{5}+1}{\sqrt{2}}\)\(=\frac{2}{\sqrt{2}}=\sqrt{2}\)

9 tháng 8 2019

2) Theo nguyên lí Dirichlet, trong ba số \(a^2-1;b^2-1;c^2-1\) có ít nhất hai số nằm cùng phía với 1.

Giả sử đó là a2 - 1 và b2 - 1. Khi đó \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Leftrightarrow a^2b^2-a^2-b^2+1\ge0\)

\(\Rightarrow a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\ge4\left(a^2+b^2+2\right)\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\) (2)

Mà \(4\left[\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\right]\ge4\left(a+b+c+1\right)^2\) (3)(Áp dụng Bunhicopxki và cái ngoặc vuông)

Từ (2) và (3) ta có đpcm.

Sai thì chịu

9 tháng 8 2019

Xí quên bài 2 b:v

b) Không mất tính tổng quát, giả sử \(\left(a^2-\frac{1}{4}\right)\left(b^2-\frac{1}{4}\right)\ge0\)

Suy ra \(a^2b^2-\frac{1}{4}a^2-\frac{1}{4}b^2+\frac{1}{16}\ge0\)

\(\Rightarrow a^2b^2+a^2+b^2+1\ge\frac{5}{4}a^2+\frac{5}{4}b^2+\frac{15}{16}\)

Hay \(\left(a^2+1\right)\left(b^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{3}{4}\right)\)

Suy ra \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{1}{4}+\frac{1}{2}\right)\left(\frac{1}{4}+\frac{1}{4}+c^2+\frac{1}{2}\right)\)

\(\ge\frac{5}{4}\left(\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c+\frac{1}{2}\right)^2=\frac{5}{16}\left(a+b+c+1\right)^2\) (Bunhiacopxki) (đpcm)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)