K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2020

Đặt \(\hept{\begin{cases}b+c-a=x\\a+c-b=y\\a+b-c=z\end{cases}}\)

vì a,b, c là độ dài 3 cạnh của 1 tam giác => \(\hept{\begin{cases}b+c>a\\c+a>b\\a+b>c\end{cases}}\Leftrightarrow\hept{\begin{cases}b+c-a>0\\c+a-b>0\\a+b-c>0\end{cases}\Rightarrow x,y,z>0}\)

và \(\hept{\begin{cases}2c=x+y\\2a=y+z\\2b=x+z\end{cases}\Rightarrow\hept{\begin{cases}c=\frac{x+y}{2}\\a=\frac{y+z}{2}\\b=\frac{x+z}{2}\end{cases}}\Rightarrow\frac{a}{b+c-a}=\frac{\frac{y+z}{2}}{x}=\frac{y+z}{2x}}\)

Tương tự: \(\hept{\begin{cases}\frac{b}{c+a-b}=\frac{x+z}{2y}\\\frac{c}{a+b-c}=\frac{x+y}{2z}\end{cases}}\)

\(\Rightarrow\frac{a}{b+c-a}+\frac{b}{c+a-b}+\frac{c}{a+b-c}=\frac{y+z}{2x}+\frac{x+z}{2y}+\frac{x+y}{2z}\)

\(=\frac{1}{2}\left(\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}\right)\)

\(=\frac{1}{2}\left(\frac{y}{z}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}\right)\)

\(=\frac{1}{2}\left[\left(\frac{y}{x}+\frac{x}{y}\right)+\left(\frac{z}{x}+\frac{x}{z}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)\right]\ge\frac{1}{2}\left(2+2+2\right)\) vì \(\hept{\begin{cases}\frac{y}{x}+\frac{x}{y}\ge2\\\frac{z}{x}+\frac{x}{z}\ge2\\\frac{y}{z}+\frac{z}{y}\ge2\end{cases}}\)

Dấu "=" khi và chỉ khi \(\hept{\begin{cases}\frac{y}{x}=\frac{x}{y}\\\frac{z}{x}=\frac{x}{z}\\\frac{y}{z}=\frac{z}{y}\end{cases}}\) và x,y,z>0

<=> x=y=z

=> a+b-c=c+a-b = a+b-c

<=> a+b+c-2a=a+b+c-2b=a+c+c-2c

<=> a=b=c

13 tháng 4 2017

Vì a ; b ; c là độ dài 3 cạnh của tam giác nên ta có : \(\hept{\begin{cases}b+c>a\\a+c>b\\a+b>c\end{cases}}\) (BĐT tam giác)

\(\Rightarrow\frac{a}{b+c}< 1\Rightarrow\frac{a}{b+c}< \frac{2a}{a+b+c}\) (1)

\(\Rightarrow\frac{b}{a+c}< 1\Rightarrow\frac{b}{a+c}>\frac{2b}{a+b+c}\) (2)

\(\Rightarrow\frac{c}{a+b}< 1\Rightarrow\frac{c}{a+b}< \frac{2c}{a+b+c}\) (3)

Cộng các vế tương ứng của (1) ; (2) ; (3) lại ta được :

\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}< \frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}\)

\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}< \frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\) (ĐPCM)

17 tháng 10 2017

ADTCDTSBN:

\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

vi  \(\frac{1}{2}\)<2=>\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}< 2\)

8 tháng 3 2015

Vì a, b, c là 3 cạnh tam giác nên a, b, c >0 và a <b+c ; b< c+a, c < a+b

Dùng bđt với x, y > 0 ; x< y(  tức x/y < 1) ta có x /y < x +m < y+m :

ta có a>0 ; b+c>0 và a < b+c => a/ b+c < a +a/a+b+c = 2a/a+b+c

tương tự b/c+a < 2b/a+b+c ; c/a+b <2c/a+b+c

Cộng từng vế 3 bđt trên sẽ ra bn nhé.

14 tháng 4 2017

Vì a,b,c là 3 cạnh của một tam giác nên ta có:

a>0 \(\Rightarrow\)a<b+c \(\Rightarrow\)a+a<a+b+c\(\Rightarrow\)2a<a+b+c (1)

b>0 \(\Rightarrow\)b<c+a \(\Rightarrow\)b+b<a+b+c\(\Rightarrow\)2b<a+b+c (2)

c>0 \(\Rightarrow\)c<a+b \(\Rightarrow\)c+c<a+b+c\(\Rightarrow\)2c<a+b+c (3)

Từ (1);(2);(3) \(\Rightarrow\)\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}\)

\(=\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< 2\)

14 tháng 4 2017

\(\frac{a}{b+c}\)+\(\frac{b}{c+a}\)\(\frac{c}{a+b}\)

=\(\frac{a}{b}\)+\(\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}\)

=\(\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\)

Vì hai p/s nghịch đảo luôn lớn hơn hoặc bằng 2(lên lớp 8 sẽ có công thức)

nên nó phải luôn lớn hơn hoặc bằng 2

4 tháng 4 2016

caí́́́́  nay thi mk chiu Ă