K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2017

Ta có BĐT phụ: \(a^5+b^5\ge a^2b^2\left(a+b\right)\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\left(a^2+ab+b^2\right)\ge0\)*đúng*

\(\Rightarrow a^5+b^5+ab\ge a^2b^2\left(a+b\right)+ab=ab\left(ab\left(a+b\right)+1\right)\)

\(\Rightarrow\dfrac{ab}{a^5+b^5+ab}\ge\dfrac{ab}{ab\left(ab\left(a+b\right)+1\right)}=\dfrac{1}{ab\left(a+b\right)+1}\)

\(=\dfrac{c}{abc\left(a+b\right)+c}=\dfrac{c}{a+b+c}\left(abc=1\right)\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế:

\(VT\le\dfrac{a+b+c}{a+b+c}=1=VP\)

Khi \(a=b=c=1\)

NV
21 tháng 9 2021

Với x;y dương, ta có BĐT:

\(x^5+y^5\ge x^2y^2\left(x+y\right)\)

Thật vậy, BĐT tương đương:

\(x^5-x^4y+y^5-xy^4\ge0\)

\(\Leftrightarrow x^4\left(x-y\right)-y^4\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\left(x^2+y^2\right)\ge0\) (luôn đúng)

Áp dụng:

\(\Rightarrow A\le\dfrac{ab}{a^2b^2\left(a+b\right)+ab}+\dfrac{bc}{b^2c^2\left(b+c\right)+bc}+\dfrac{ca}{c^2a^2\left(c+a\right)+ca}\)

\(A\le\dfrac{1}{ab\left(a+b\right)+1}+\dfrac{1}{bc\left(b+c\right)+1}+\dfrac{1}{ca\left(c+a\right)+1}\)

\(A\le\dfrac{abc}{ab\left(a+b\right)+abc}+\dfrac{abc}{bc\left(b+c\right)+abc}+\dfrac{abc}{ca\left(c+a\right)+abc}=\dfrac{c}{a+b+c}+\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}=1\)

1 tháng 8 2017

b)Ta có: \(\dfrac{a^3}{bc}+\dfrac{b^3}{ac}+\dfrac{c^3}{ab}\ge a+b+c\left(1\right)\)

\(\Leftrightarrow\dfrac{a^4}{abc}+\dfrac{b^4}{abc}+\dfrac{c^4}{abc}\ge a+b+c\)

\(\Leftrightarrow\dfrac{a^4+b^4+c^4}{abc}\ge a+b+c\)

\(\Leftrightarrow a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

Ta xét BĐT phụ: \(x^2+y^2\ge2xy\)

\(y^2+z^2\ge2yz\)

\(x^2+z^2\ge2xz\)

Cộng các BĐT phụ vừa chứng minh:

\(2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\)

\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\)

Áp dụng vào bài, ta có:

\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)

Áp dụng lần nữa:

\(a^2b^2+b^2c^2+c^2a^2\ge ab^2c+bc^2a+a^2bc=abc\left(a+b+c\right)\)

Vậy ta suy ra được điều phải chứng minh

2 tháng 8 2017

a) Đặt vế trái BĐT là P

\(\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{1+b}{8}+\dfrac{1+c}{8}\ge3\sqrt[3]{\dfrac{a^3\left(1+b\right)\left(1+c\right)}{\left(1+b\right)\left(1+c\right)8.8}}=\dfrac{3a}{4}\)

Tương tự: \(\dfrac{b^3}{\left(1+a\right)\left(1+c\right)}+\dfrac{1+a}{8}+\dfrac{1+c}{8}\ge\dfrac{3b}{4}\)

\(\dfrac{c^3}{\left(1+a\right)\left(1+b\right)}+\dfrac{1+a}{8}+\dfrac{1+b}{8}\ge\dfrac{3c}{4}\)

Cộng vế theo vế các BĐT vừa chứng minh

\(P+\dfrac{6+2a+2b+2c}{8}\ge\dfrac{3a+3b+3c}{4}\)

\(P\ge\dfrac{3a+3b+3c}{4}-\dfrac{2\left(3+a+b+c\right)}{8}=\dfrac{3a+3b+3c-a-b-c-3}{4}=\dfrac{2\left(a+b+c\right)-3}{4}\)

\(a+b+c\ge3\sqrt[3]{abc}=3\)

\(\Rightarrow P\ge\dfrac{2.3-3}{4}=\dfrac{3}{4}\)