K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2019

Ta co:

\(\frac{1}{a+b^2}+\frac{1}{a^2+b}=\frac{1}{\frac{a^2}{a}+b^2}+\frac{1}{a^2+\frac{b^2}{b}}\ge\frac{1}{\frac{\left(a+b\right)^2}{a+1}}+\text{ }\frac{1}{\frac{\left(a+b\right)^2}{b+1}}=\frac{a+b+2}{\left(a+b\right)^2}\)

Ta di chung minh:

\(\frac{a+b+2}{\left(a+b\right)^2}\le1\)

Dat \(t=a+b\left(t\ge2\right)\)

BDT can chung minh la:

\(\frac{t+2}{t^2}\le1\)

\(\Leftrightarrow\left(t-2\right)\left(t+1\right)\ge0\left(True\right)\)

Dau '=' xay ra khi \(a=b=1\)

30 tháng 11 2019

Ta có:\(\frac{1}{a+b^2}\le\frac{1}{2b\sqrt{a}}\)( áp dụng bất đẳng thức coossi cho a và b^2 rồi nghịch đảo)

\(\frac{1}{b^2+a}\le\frac{1}{2b\sqrt{a}}\)

Do đó: \(\frac{1}{a+b^2}+\frac{1}{b+a^2}\le\frac{1}{2b\sqrt{a}}+\frac{1}{2a\sqrt{b}}\)

\(=\frac{\sqrt{a}+\sqrt{b}}{2ab}=\frac{\sqrt{a}.1+\sqrt{b}.1}{2ab}\)

\(\le\frac{\frac{a+1}{2}+\frac{b+1}{2}}{2ab}=\frac{a+b+2}{4ab}\)( áp dụng bất đẳng thức cosi cho \(\sqrt{a}.1\)và \(\sqrt{b}.1\))

\(\le\frac{a+b+2}{\left(a+b\right)^2}=\frac{a+b}{\left(a+b\right)^2}+\frac{2}{\left(a+b\right)^2}\)

\(=\frac{1}{a+b}+\frac{2}{\left(a+b\right)^2}\)

\(\le\frac{1}{2}+\frac{2}{4}=1\)( do a+b\(\ge\)2 nên \(\frac{1}{a+b}\le\frac{1}{2}\)và \(\left(a+b\right)^2\ge4\)nên  \(\frac{2}{\left(a+b\right)^2}\le\frac{2}{4}\))

Dấu bằng xảy ra khi và chỉ khi a=b=1

11 tháng 2 2020

a,b,c< 0 mà a+b+c bé hơn hoặc bằng 1

a+b+c ít nhất phải bằng 3 chứ!

7 tháng 8 2020

CM cái sau: 

Ta có: \(a+\frac{1}{a}=\frac{a}{1}+\frac{1}{a}\ge2\sqrt{\frac{a}{1}.\frac{1}{a}}=2.1=2\) (bất đẳng thức Cauchy)

Chứng minh: 

\(\left(a-b\right)^2\ge0\left(\forall a,b\right)\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a+b\ge2\sqrt{ab}\)

(áp dụng vào cái trên)

7 tháng 8 2020

Dấu "=" xảy ra khi:

\(a=\frac{1}{a}\Leftrightarrow a^2=1\Rightarrow a=1\left(a>0\right)\)

26 tháng 12 2019

De dung la:

\(\Sigma_{cyc}\frac{1}{1+a^2+b^2}\le\frac{9}{5}\)

\(\Leftrightarrow\Sigma_{cyc}\frac{a^2+b^2}{1+a^2+b^2}\ge\frac{6}{5}\)

\(VT\ge\frac{\left(\Sigma_{cyc}\sqrt{a^2+b^2}\right)^2}{2\Sigma_{cyc}a^2+3}\left(M\right)\)

Consider:

\(VT_M\ge\frac{6}{5}\)

\(5\Sigma_{cyc}\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge\Sigma_{cyc}a^2+9\)

Consider:

\(5\Sigma_{cyc}\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge5\Sigma_{cyc}a^2+5\Sigma_{cyc}ab=5\Sigma_{cyc}a^2+5\)

Gio can cung minh:

\(5\Sigma_{cyc}a^2+5\ge\Sigma_{cyc}a^2+9\)

\(\Leftrightarrow\Sigma_{cyc}a^2\ge1\)

Ta lai co:

\(\Sigma_{cyc}a^2\ge\Sigma_{cyc}ab=1\)

Dau '=' xay ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

16 tháng 1 2020

Chuẩn hóa \(a+b+c=1\)

Khi đó BĐT cần chứng minh tương đương với

\(\frac{a\left(1-a\right)}{1-2a+2a^2}+\frac{b\left(1-b\right)}{1-2b+2b^2}+\frac{c\left(1-c\right)}{1-2c+2c^2}\le\frac{6}{5}\)

Mặt khác:

\(2a\left(1-a\right)\le\left(\frac{2a+1-a}{2}\right)^2=\frac{\left(a+1\right)^2}{4}\)

Khi đó:\(1-2a+2a^2=1-2a\left(1-a\right)\ge1-\frac{\left(a+1\right)^2}{4}=\frac{\left(1-a\right)\left(a+3\right)}{4}>0\)

\(\Rightarrow\frac{a\left(1-a\right)}{1-2a+2a^2}\le\frac{4a\left(1-a\right)}{\left(1-a\right)\left(a+3\right)}=4\cdot\frac{a}{a+3}=4\left(1-\frac{3}{a+3}\right)\)

Tương tự rồi cộng lại ta được:

\(RHS\le4\left(3-\frac{3}{a+3}-\frac{3}{b+3}-\frac{3}{c+3}\right)\le4\left(3-\frac{3\cdot9}{a+b+c+9}\right)=\frac{6}{5}\)

16 tháng 1 2020

Không cần a+b+c=1 thì BĐT vẫn đúng mà

21 tháng 8 2017

Sửa lại x thánh x thuộc Z

20 tháng 11 2019

bđt \(\Leftrightarrow\)\(\Sigma_{cyc}\frac{a^2+ab+ca}{\left(b+c\right)^2}\ge\frac{9}{4}\)

Có: \(\frac{a^2+ab+ca}{\left(b+c\right)^2}=\frac{a^2+ab+bc+ca}{\left(b+c\right)^2}-\frac{bc}{\left(b+c\right)^2}\ge\frac{\left(a+b\right)\left(c+a\right)}{\left(b+c\right)^2}-\frac{1}{4}\)

=> \(\Sigma_{cyc}\frac{a^2+ab+ca}{\left(b+c\right)^2}\ge3\sqrt[3]{\frac{\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2}{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}}-\frac{3}{4}=\frac{9}{4}\)

20 tháng 11 2019

bđt\(\Leftrightarrow\left[\Sigma_{cyc}\frac{a}{\left(b+c\right)^2}\right]\left(a+b+c\right)\ge\frac{9}{4}\)

Ta co:

\(VT\ge\left(\Sigma_{cyc}\frac{a}{b+c}\right)^2\ge\frac{9}{4}\)(theo bunhiacopxki va nesbit)

Dau '=' xay ra khi \(a=b=c\)